首页> 外文会议>AIAA/ASME/SAE/ASEE joint propulsion conference >Prediction of Spatial Distributions of Equilibrium Product Species from High Explosive Blasts in Air
【24h】

Prediction of Spatial Distributions of Equilibrium Product Species from High Explosive Blasts in Air

机译:空气中高爆炸爆炸均衡产品种类空间分布的预测

获取原文

摘要

Blast waves from an e xplosion in air can cause si gnifkant structural damage. As an example, cylindrically-shaped charges have been used for over a century as dynamite sticks for mining, excavation, and demolition. Near the charge, the effects of geometry, standoff from the ground, the proximity to other objects, confinement (tamping), and location of the detonator can significantly affect blast wave characteristics. Furthermore, nonuniformity in the surface characteristics and the density of the charge can affect fireball and Shockwave structure. Currently, the best method for predicting the shock structure near a charge and the dynamic loading on nearby structures is to use a multidimensional, multimaterial shock physics code. However, no single numerical technique curren tly exists for predicting secondary combustion, especially when particulates from the charge are propelled through the fireball and ahead of the leading shock lens. Furthermore, the air within the thin shocked layer can dissociate and ionize. Hence, an appropriate equation of state for air is needed in these extreme environments. As a step towar ds predicting this complex phenomenon, a technique was developed to provide the equilibrium species composition at every computational cell in a n air blast simulation as an initial condition for hand-off to other analysis codes for combusti on fluid dynamics or radiation transport. Her e, a bare cylindrical charge of TNT detonated in air is simulated using CTH, an Eulerian, finite volume, shock propagation code developed and maintained at Sandia National Laboratories. The shock front propagation is computed at early times, including the detonation wave structure in the explosi ve and the subs equent air shock up to 100 microseconds, where ambient air entr ainment is not sig nificant. At each computational cell, which could have TNT detonation products, air, or both TNT and air, the equilibrium species concentration at the density-energy state is computed using the JCZS2i database in the thermochemical code TIGER. Thi s extensive database of 1267 gas (including 189 ioniz ed species) an d 490 condensed species can predict thermodynamic states up to 20,000 K. The res ults of these calculations provide the detailed three-dimensional structure of a thin shock front, and spatial species concentrations including free radicals and ions. Further more, air shock predictions are compared with experi mental pressure gage data from a right circul ar cylinder of pressed TNT, detonated at one end. These complime ntary predictions show excellent agreement with the data for the primary wave structure.
机译:来自空气中的E Xplosion的爆炸波可能导致Si Gnifkant结构损坏。例如,圆柱形的电荷已被使用超过一个世纪以用于采矿,挖掘和拆卸的炸药棒。接近电荷,几何形状,从地面的梯级,靠近其他物体,限制(夯实)和雷管的位置可以显着影响爆发波特性。此外,表面特性的不均匀性和电荷的密度可以影响火球和冲击波结构。目前,用于预测充电附近的冲击结构的最佳方法和附近结构上的动态负载是使用多维多维冲击物理密码。然而,没有以用于预测二次燃烧的单一数值技术验流,特别是当从电荷的颗粒通过火球推进时,以引导的震动镜头推进。此外,薄震动层内的空气可以解离和电离。因此,在这些极端环境中需要适当的空气状态方程。作为预测这种复杂现象的步骤段DS,开发了一种技术,以在N空气喷射模拟中提供平衡物种组成作为初始条件,以便切换到流体动力学或辐射运输上的燃烧中的其他分析代码。她的E,使用CTH,欧拉,有限体积,在桑迪亚国家实验室开发和维护的震动传播代码模拟了在空气中引爆的TNT的裸圆柱电荷。震动前传播在早期计算,包括爆炸波结构,潜水潜水击球机震动高达100微秒,环境空气圈末端不是SIG全部的。在每个计算单元上,该计算单元可以具有TNT爆炸产品,空气或TNT和空气,使用热化学代码虎中的JCZS2I数据库计算密度能状态下的平衡物质浓度。 Thi的大量数据库1267天然气(包括189 Ioniz ED物种)D 490缩合物种可以预测热力学状态,高达20,000 K.这些计算的RES ULT提供了薄震动前沿的详细三维结构和空间物种包括自由基和离子在内的浓度。此外,将空气冲击预测与来自按压TNT的右线AR圆柱体的实验性压力表数据进行比较,在一端爆炸。这些具有初级波结构的数据显示出很好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号