首页> 外文会议> >Prediction of Spatial Distributions of Equilibrium Product Species from High Explosive Blasts in Air
【24h】

Prediction of Spatial Distributions of Equilibrium Product Species from High Explosive Blasts in Air

机译:空气中高爆炸力炸药平衡产物种类的空间分布预测

获取原文

摘要

Blast waves from an e xplosion in air can cause si gnifkant structural damage. As an example, cylindrically-shaped charges have been used for over a century as dynamite sticks for mining, excavation, and demolition. Near the charge, the effects of geometry, standoff from the ground, the proximity to other objects, confinement (tamping), and location of the detonator can significantly affect blast wave characteristics. Furthermore, nonuniformity in the surface characteristics and the density of the charge can affect fireball and Shockwave structure. Currently, the best method for predicting the shock structure near a charge and the dynamic loading on nearby structures is to use a multidimensional, multimaterial shock physics code. However, no single numerical technique curren tly exists for predicting secondary combustion, especially when particulates from the charge are propelled through the fireball and ahead of the leading shock lens. Furthermore, the air within the thin shocked layer can dissociate and ionize. Hence, an appropriate equation of state for air is needed in these extreme environments. As a step towar ds predicting this complex phenomenon, a technique was developed to provide the equilibrium species composition at every computational cell in a n air blast simulation as an initial condition for hand-off to other analysis codes for combusti on fluid dynamics or radiation transport. Her e, a bare cylindrical charge of TNT detonated in air is simulated using CTH, an Eulerian, finite volume, shock propagation code developed and maintained at Sandia National Laboratories. The shock front propagation is computed at early times, including the detonation wave structure in the explosi ve and the subs equent air shock up to 100 microseconds, where ambient air entr ainment is not sig nificant. At each computational cell, which could have TNT detonation products, air, or both TNT and air, the equilibrium species concentration at the density-energy state is computed using the JCZS2i database in the thermochemical code TIGER. Thi s extensive database of 1267 gas (including 189 ioniz ed species) an d 490 condensed species can predict thermodynamic states up to 20,000 K. The res ults of these calculations provide the detailed three-dimensional structure of a thin shock front, and spatial species concentrations including free radicals and ions. Further more, air shock predictions are compared with experi mental pressure gage data from a right circul ar cylinder of pressed TNT, detonated at one end. These complime ntary predictions show excellent agreement with the data for the primary wave structure.
机译:空气中爆炸产生的爆炸波会造成结构上的明显损坏。例如,一个多世纪以来,圆柱形炸药已被用作炸药棒,用于采矿,挖掘和拆除。在装药附近,几何形状,与地面的距离,与其他物体的接近程度,限制(夯实)和雷管的位置等影响会严重影响爆炸波的特性。此外,表面特性和电荷密度的不均匀会影响火球和冲击波的结构。当前,预测装药附近的冲击结构和附近结构上的动态载荷的最佳方法是使用多维,多材料的冲击物理代码。但是,目前没有任何一种数值技术可用于预测二次燃烧,特别是当来自装药的微粒被推进通过火球并到达前避震镜之前时。此外,薄的冲击层内的空气可以离解并离子化。因此,在这些极端环境中需要合适的空气状态方程。作为预测这种复杂现象的步骤,开发了一种技术,可在n次鼓风模拟中为每个计算单元提供平衡物质组成,作为移交给其他用于流体动力学或辐射传输分析代码的初始条件。她的e是在空中引爆的TNT裸露的圆柱形装药,使用的是CTH,这是由桑迪亚国家实验室开发并维护的欧拉有限体积的冲击传播代码。冲击波前传播是在早期计算的,包括爆炸中的爆炸波结构以及随后的高达100微秒的空气冲击,在这种情况下,周围的空气输入并不重要。在每个可能具有TNT爆炸产物,空气或TNT和空气两者的计算单元中,使用热化学代码TIGER中的JCZS2i数据库计算密度-能量状态下的平衡物质浓度。 Thi的广泛数据库包含1267种气体(包括189种离子化物质)和490种冷凝物,可以预测高达20,000 K的热力学状态。这些计算结果提供了薄激波前沿和空间物种的详细三维结构浓度包括自由基和离子。此外,将空气冲击预测与来自一端被引爆的受压TNT的右循环气缸的实验压力计数据进行了比较。这些补充性预测显示出与一次波结构的数据极佳的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号