Operational analysis techniques are used to partially characterize the behavior of timed Petri nets under very weak assumptions on their timing semantics. New operational inequalities are derived that are typical of the presence of synchronization and that were therefore not considered in queuing network models. An interesting application of the operational laws to the statement and the efficient solution of problems related to the estimation of performance bounds insensitive to the timing probability distributions is shown. The results obtained generalize and improve in a clear setting results that were derived in the last few years for several different subclasses of timed Petri nets. In particular, the extension to well-formed colored nets appears straightforward and allows an efficient exploitation of model symmetries.
展开▼