首页> 外文会议>International Conference on Nuclear Engineering >STRUCTURE-PROPERTY RELATIONSHIPS IN POLYMER DERIVED AMORPHOUS/NANO-CRYSTALLINE SILICON CARBIDE FOR NUCLEAR APPLICATIONS
【24h】

STRUCTURE-PROPERTY RELATIONSHIPS IN POLYMER DERIVED AMORPHOUS/NANO-CRYSTALLINE SILICON CARBIDE FOR NUCLEAR APPLICATIONS

机译:核应用中聚合物衍生非晶/纳米晶碳化硅的结构性质关系

获取原文

摘要

Silicon carbide (SiC) is a promising candidate for several applications in nuclear reactors owing to its high thermal conductivity, high melting temperature, good chemical stability, and resistance to swelling under heavy ion bombardment. However, fabricating SiC by traditional powder processing route generally requires very high temperatures for pressureless sintering. Polymer derived ceramic materials offer unique advantages such as ability to fabricate net shaped components, incorporate reinforcements and relatively low processing temperatures. Furthermore, for SiC based ceramics fabricated using polymer infiltration process (PIP), the microstructure can be tailored by controlling the processing parameters, to get an amorphous, nanocrystalline or crystalline SiC. In this work, fabrication of polymer derived amorphous and nano-grained SiC is presented and its application as an in-core material is explored. Monolithic SiC samples are fabricated by controlled pyrolysis of allylhydridopolycarbosilane (AHPCS) under inert atmosphere. Chemical changes, phase transformations and microstructural changes occurring during the pyrolysis process are studied as a function of the processing temperature. Polymer cross-linking and polymer to ceramic conversion is studied using infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) are performed to monitor the mass loss and phase change as a function of temperature. X-ray diffraction studies are done to study the intermediate phases and microstructural changes. Variation in density is carefully monitored as a function of processing temperature. Owing to shrinkage and gas evolution during pyrolysis, precursor derived ceramics are inherently porous and composite fabrication typically involves repeated cycles of polymer reinfiltration and pyrolysis. However, there is a limit to the densification that can be achieved by this method and porosity in the final materials presents difficulties in interpreting "true" properties from bulk measurements. Hence, hardness and modulus measurements are carried out using instrumented nanoindentation to establish property-structure relationship for SiC derived from the polymer precursor. It is seen that the presence of nanocrystalline domains in amorphous SiC significantly influences the modulus and hardness.
机译:碳化硅(SIC)是由于其高导热性,高熔化温度,良好的化学稳定性和抗肿胀在重离子轰击下的核反应堆中几种应用的有希望的候选者。然而,通过传统的粉末加工途径制造SiC通常需要对无压烧结的非常高的温度。聚合物衍生的陶瓷材料提供独特的优点,例如制造净形部件的能力,包括增强和相对低的加工温度。此外,对于使用聚合物渗透过程(PIP)制造的基于SiC的陶瓷,可以通过控制加工参数来定制微观结构,得到无定形,纳米晶体或结晶SiC。在这项工作中,提出了聚合物衍生的无定形和纳米颗粒SiC的制备及其作为核心材料的应用。通过在惰性气氛下通过控制热解(AHPC)的烯丙基氢多聚碳硅烷(AHPC)的受控热解来制造单片SiC样品。在热解过程中进行化学变化,相变性和微观结构变化作为加工温度的函数。使用红外光谱(FTIR)研究聚合物交联和聚合物与陶瓷转化。进行热重分析(TGA)和差分热分析(DTA)以监测作为温度的函数的质量损失和相变。进行X射线衍射研究以研究中间阶段和微观结构变化。密度的变化被仔细监测为处理温度的函数。由于在热解期间的收缩和气体进化,前体衍生的陶瓷本质上是多孔的,复合制造通常涉及重复的聚合物Reinferatoration和热解的循环。然而,由于这种方法可以实现的致密化存在限制,并且最终材料中的孔隙率在解释从批量测量中解释“真实”性质的困难。因此,使用仪表纳米indentation进行硬度和模量测量,以建立衍生自聚合物前体的SiC的性质 - 结构关系。可以看出,无定形SiC中纳米晶结构域的存在显着影响模量和硬度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号