首页> 外文会议>ASME Fluids Engineering Division Meeting >DYNAMIC PROCESS MODELING ON DEPRESSURIZATION BY COOLING-CONTROLLED CONDENSATION IN A CLOSED CHAMBER
【24h】

DYNAMIC PROCESS MODELING ON DEPRESSURIZATION BY COOLING-CONTROLLED CONDENSATION IN A CLOSED CHAMBER

机译:封闭室中冷却控制冷凝压下的动态过程建模

获取原文

摘要

It has long been realized that condensation in a chamber prefilled with condensable vapor leads to chamber depressurization, and the condensation rate can be cooling controlled. While the final state can be reasonably estimated based on the thermodynamic equilibrium, the dynamic process or rate of depressurization has not been satisfactorily modeled, which is due to the complicated coupling mechanisms of heat and mass transfer, the transient nature of non-equilibrium during the process, the complication by the co-existence of non-condensable gas (NCG) within vapor, as well as the complex geometry and material properties of chamber and cooling device involved. In this paper, we have conducted an experimental study on depressurization by steam condensation onto an internal cooling coil in a steam-prefilled closed chamber. To reveal various parametric effects on the depressurization process, a parametric model consisting of a set of coupled ordinary differential equations has been established, with some simplified assumptions including lumped heat capacity sub-models for chamber walls, cooling coils and the gas phase. To further explore the thermal non-equilibrium characteristics during the process, a simplified and transient simulation of computational fluid dynamics (CFD) is also conducted using FLUENT with user-defined function (UDF) on boundary of condensation. Both parametric and CFD models consider the existence of NCG that is pre-mixed with the vapor as impurity. By comparison with the experimental measurements, both models correctly predict the dynamic and asymptotic characteristics of depressurization with time. The CFD simulation indicates an almost instant equilibrium in pressure within the chamber and yet non-equilibrium in temperature with noticeable temperature gradients over the gas phase. The simplified parametric model provides quick and quantitative assessments of some major parametric effects (e.g., vapor purity, coolant flow rate, and vessel volume) on the rate of depressurization. The detailed mechanistic understanding, gained from proposed models, provides insights essential to the optimized design and operation of the depressurization by cooling-controlled condensation.
机译:已经很久实现了预先填充可冷凝蒸汽的腔室中的冷凝导致室减压,并且冷凝率可以冷却控制。虽然基于热力学平衡可以合理地估计最终状态,但抑制的动态过程或减压率尚未令人满意地建模,这是由于热量和传质的复杂耦合机制,非平衡期间的瞬态性质方法,蒸汽内不可冷凝气体(NCG)的共同存在,以及涉及腔室和冷却装置的复杂几何形状和材料特性。在本文中,我们对蒸汽预填充腔室中的内部冷却盘管进行了减压进行了实验研究。为了揭示对减压过程的各种参数效应,已经建立了由一组耦合的常微分方程组成的参数模型,其具有一些简化的假设,包括用于腔室壁,冷却线圈和气相的集总热容量子模型。为了进一步探讨过程中的热非平衡特性,还使用在冷凝边界上使用流畅的用户定义的函数(UDF)进行计算流体动力学(CFD)的简化和瞬态模拟。参数和CFD模型都考虑与蒸汽作为杂质预先混合的NCG的存在。通过与实验测量进行比较,两种模型都正确地预测了随时间减压的动态和渐近特征。 CFD仿真表示腔室内的压力几乎瞬间平衡,并且在气相中具有明显的温度梯度的温度下的不平衡。简化的参数模型提供了对减压速率的一些主要参数效果(例如,蒸汽纯度,冷却剂流速和血管体积)的快速和定量评估。从拟议的模型中获得的详细机制理解为通过冷却控制的冷凝进行了优化的设计和操作的优化设计和操作,为洞察力提供了必要的洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号