首页> 外文会议>Hypervelocity Impact Symposium >Failure mechanisms of N1-H2 and Li-Ion batteries under hypervelocity impacts
【24h】

Failure mechanisms of N1-H2 and Li-Ion batteries under hypervelocity impacts

机译:高档影响下N1-H2和锂离子电池的失效机制

获取原文
获取外文期刊封面目录资料

摘要

Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-Lh) batteries for the International Space Station (ISS) to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar arrays meet their sunlit power demands and supply excess power to battery packs for power delivery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are exposed to external environment threats like naturally occurring micrometeoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD motivating a study into the failure consequences to the ISS. This paper documents the different failure modes for these two types of batteries under hypervelocity impact and the implications for spacecraft survivability when shielding is breached.
机译:锂离子(锂离子)电池对许多行业产生了显着的性能优势,包括航空航天工业,并被选中以取代国际空间站(ISS)的镍氢(NI-LH)电池以满足储能需要。由于ISS使用其巨大的太阳阵列来产生其电源,因此太阳阵列满足其日光照相需求,并为电池组供应过量的电源,以便在近似90分钟的低地球轨道上的太阳遮挡阶段。这些大型电池组位于ISS的外部,因此,电池组暴露于外部环境威胁,如天然存在的微晶体和人造轨道碎片(MMOD)。虽然这些固体粒子环境的风险已知并通过屏蔽设计来解决故障的可接受风险,但由于MMOD激励对失败后果的影响,因此无法完全消除轨道上这些资产丢失的风险iss。本文记录了这两种电池的不同故障模式在超额兴趣的影响下,并且在屏蔽时对航天器生存性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号