首页> 外文会议>Conference on Optical Trapping and Optical Micromanipulation >Understanding and Optimizing Laser-induced Thermoelectric Forces for Enhanced Trapping and Manipulation of Colloidal Particles
【24h】

Understanding and Optimizing Laser-induced Thermoelectric Forces for Enhanced Trapping and Manipulation of Colloidal Particles

机译:理解和优化激光诱导的热电力,以增强胶体颗粒的捕获和操纵

获取原文

摘要

Several studies have been proposed to control particle trajectory in liquid solutions using optically induced thermal gradient. Upon introducing different solutes such as salts and surfactants along with microparticles in these solutions, an additional optically induced thermoelectric trapping force is generated due to the differential motion of ions in the solution under thermal field. As the complexity of the solution increases, it becomes increasing difficult to understand particle response towards laser irradiance. More importantly, the existing models to study the thermoelectric behavior of the particle assumes a constant temperature gradient across the particles, which becomes obsolete in the micro-regime due to discontinuity of thermal conductivity at the particle-solution interface. For a better understanding of trapping and manipulation behavior of particles under light induced thermoelectric field, the temperature gradient distortion must be considered. In this work, full-scale finite-element solver model has been proposed to determine the temperature variation around a microparticle under laser heating. The resultant temperature distribution is utilized to numerically evaluate the thermoelectric field and the trapping potential of the laser induced opto-thermoelectric trap. To experimentally validate this methodology, polystyrene micro-particles are trapped opto-thermoelectric-ally in CTAC solution and compared the experimental trapping stiffness to theoretical estimates obtained from the model. It is observed that trapping stiffness saturates as surfactant concentration increases which can be optimized by choosing the lowest CTAC concentration at the onset of saturation. The model implemented here can be easily extended to arbitrarily shaped particles, particles with non-uniform surface morphology, different combinations of core-shell particles and electrolyte solutions, which can be implemented to study different phenomenon such as optical pulling, rotation and translation.
机译:已经提出了使用光学诱导的热梯度控制液体溶液中的颗粒轨迹的几项研究。在这些溶液中引入不同的溶质,例如盐和表面活性剂以及微粒,由于在热场中的溶液中的离子差异运动,产生了另外的光学诱导的热电俘获力。随着溶液的复杂性增加,理解激光辐照度的粒子反应变得越来越难。更重要的是,研究粒子的热电行为的现有模型在颗粒上具有恒定的温度梯度,其由于颗粒 - 溶液界面处的导热率的不连续性而在微压中变得过时。为了更好地理解光诱导热电场下颗粒的捕获和操纵行为,必须考虑温度梯度变形。在这项工作中,已经提出了全尺寸的有限元求解器模型来确定激光加热下微粒周围的温度变化。所得到的温度分布用于数值评价激光诱导光热电阱的热电场和捕获电位。为了通过实验验证该方法,聚苯乙烯微粒被捕获在CTAC溶液中的光热电盟,并将实验捕获刚度与从模型中获得的理论估计进行比较。观察到,随着表面活性剂浓度的增加,捕获刚度使其通过在饱和状态下选择最低的CTAC浓度来优化。这里实施的模型可以容易地延伸到任意形状的颗粒,具有非均匀表面形态的颗粒,核壳颗粒和电解质溶液的不同组合,这可以实现以研究不同现象,例如光学拉动,旋转和翻译。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号