首页> 外文会议>International Conference on Information Science, Computer Technology and Transportation >Quantum Phase Transition in A Two-Dimensional Quantum Ising Model: Tensor Network States and Ground-State Fidelity
【24h】

Quantum Phase Transition in A Two-Dimensional Quantum Ising Model: Tensor Network States and Ground-State Fidelity

机译:二维量子读数模型中量子相变:张量网络状态和地面保真度

获取原文

摘要

The purpose of this paper is to describe how to describe the phase transition of quantum multibody system from the perspective of the basic concept of quantum information science - fidelity. For systems the traditional way of characterization that undergo a quantum phase transition is Landau's introduction of order and the fluctuation. In particular, for phase transitions caused by spontaneous breaking symmetry, that is, different ground state wave functions are orthogonal to each other. This suggests that, contrary to the ups and downs of traditional expressions, the concept of irrelevant information and vital information can be introduced. By introducing the basic amount of ground lattice fidelity, quantifying irrelevant information and critical information which can identify the quantum phase transition of the system. It is worth emphasizing that no matter the internal order of quantum multibody systems is a traditional symmetry or other novel quantum order, they all can be applied such as topological order, single-grid ground state fidelity. In order to efficiently calculate the single-grid ground state fidelity of quantum multibody systems, tensor network algorithm is needed. This kind of algorithm is the result of the deepening of quantum entanglement in recent years. Quantum entanglement expounds the working principle of real-space renormalization group algorithm, especially density matrix re-grouping algorithm.
机译:本文的目的是介绍如何从量子信息科学的基本概念的角度描述如何描述量子多体系的相转移。对于系统,传统的表征方式,经过量子阶段过渡是Landau的秩序和波动的引入。特别地,对于由自发破坏对称引起的相转变,即,不同的地态波函数彼此正交。这表明,与传统表达的UP和贬值相反,可以介绍无关信息和重要信息的概念。通过引入基本晶格保真度的基本量,量化无关的信息和临界信息,可以识别系统的量子相转变。值得强调的是,无论量子多体系的内部秩序是一种传统的对称性或其他新型量子级,它们都可以应用,例如拓扑顺序,单网接地状态保真度。为了有效地计算量子多体系的单网态态度,需要张量网络算法。这种算法是近年来大量子纠缠深化的结果。量子纠缠阐述了实时空间重整组算法的工作原理,尤其是密度矩阵重新分组算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号