首页> 外文会议>International Seminar on Intelligent Technology and Its Applications >Classification of human state emotion from physiological signal pattern using pulse sensor based on learning vector quantization
【24h】

Classification of human state emotion from physiological signal pattern using pulse sensor based on learning vector quantization

机译:基于学习矢量量化的基于脉冲传感器的生理信号模式对人类状态情感的分类

获取原文

摘要

Many studies have shown that there is a close relationship between emotions and human health. Negative emotions have a bad influence on patients with chronic diseases, otherwise positive emotions have a good effect on human health. Early detection on emotional state of patients with chronic diseases is necessary to avoid more severe consequences. This study is a preliminary approach to achieve that goal. In this research 6 emotional states were identified via a video stimuli by using a pulse sensor, there were disgust, fear, surprised, angry, sad and happy. Thirty participants were involved in this research. Ten parameters were anayzed via pulse sensor such as mean value of the data relative to the baseline threshold, min and max value, standard deviation, number of Onset and Offset, and number and total of amplitude value, total of rising time, and time of arrousal. Optimum parameters for data classification using Learning Vector Quantization was presented ed in this study. The accuracy of LVQ in predicting emotion according to the physiological data was 68, 52% with precentage split 70%. This preliminary study showed that some improvement is needed so that each emotion state can be recognized uniquely by using physiological data from the pulse sensor.
机译:许多研究表明,情绪与人类健康之间有着密切的关系。负面情绪对慢性病患者有不良影响,否则正面情绪对人体健康有很好的影响。为了避免更严重的后果,必须及早发现慢性病患者的情绪状态。这项研究是实现该目标的初步方法。在这项研究中,使用脉冲传感器通过视频刺激识别了6种情绪状态,其中包括厌恶,恐惧,惊讶,愤怒,悲伤和快乐。 30名参与者参与了这项研究。通过脉冲传感器分析了十个参数,例如相对于基线阈值的数据平均值,最小值和最大值,标准偏差,起始和偏移的数量,振幅值的数量和总和,上升时间的总和以及时间的总和。烦人的本研究提出了使用学习矢量量化的数据分类的最佳参数。 LVQ根据生理数据预测情绪的准确度为68%,52%和90%的比例。这项初步研究表明,需要进行一些改进,以便可以通过使用来自脉搏传感器的生理数据来唯一识别每个情绪状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号