首页> 外文会议>応用物理学会秋季学術講演会;応用物理学会 >Accelerated Growth of Novel Nanostructured Zinc Oxide Films via Microwave-Assisted H_2O Oxidation for Solar Cell Applications
【24h】

Accelerated Growth of Novel Nanostructured Zinc Oxide Films via Microwave-Assisted H_2O Oxidation for Solar Cell Applications

机译:通过微波辅助的H_2O氧化加速新型纳米结构氧化锌薄膜的生长,以用于太阳能电池应用

获取原文

摘要

Perovskite solar cells (PSCs) have advanced rapidly due to their superb photovoltaic (PV) properties along with the excellent charge-transporting materials used for charge separation. Thus, the strategic design of novel materials for charge transport is crucial for PV performance. Previously, we developed ZnO films via a novel low-temperature H_2O oxidation as electron-transporting layer (ETL) for PSCs. However, H_2O oxidation using a conventional hot-plate heating is time consuming. In this study, we integrated microwave technology with H_2O oxidation (M-WO) to accelerate the growth of ZnO. Microwave-assisted synthesis can not only shorten the processing time but also increase product yields and enhance product purity. Herein, glass/ITO/Zn thin film samples were immersed in a beaker filled with pure H_2O and placed inside the microwave oven. The effect of irradiation time was examined by applying a microwave power at 500 W for 0.5-2 h. Fig. 1(a) shows the resulting nanostructures (NSs) after M-WO process. Flat-topped ZnO nanorods (NRs) developed immediately after 30 min. Then after 1 h, the flat-topped NRs evolved to pointed NRs. Increasing the irradiation time to 1.5 h initiated the formation of some nanotubes (NTs), possibly due to the natural selective etching along the (001) plane of ZnO crystal. Finally, all the existing NRs were converted to NTs creating honeycomb-like structures after 2 h. The HRTEM and NBD pattern of a single flat-topped ZnO NR is shown in Fig. 1(b). It can be seen that the NR is highly crystalline with a lattice spacing of about 0.28 nm, corresponding to the (100) spacing of ZnO crystal lattice. In order to evaluate the overall applicability of the ZnO films in practical devices, we examined their ETL capability with perovskite films via steady-state PL analysis (Fig. 1(c)). The perovskite emission is clearly quenched when in contact with the ZnO films, signifying electron transfer. These preliminary results revealed the great potential of our ZnO films as ETL not only to perovskite solar cells but also to other photovoltaic and optoelectronic devices.
机译:钙钛矿太阳能电池(PSC)由于其卓越的光伏(PV)特性以及用于电荷分离的出色电荷传输材料而迅速发展。因此,用于电荷传输的新型材料的战略设计对于PV性能至关重要。以前,我们通过新型的低温H_2O氧化技术开发了ZnO薄膜,作为PSC的电子传输层(ETL)。然而,使用常规的热板加热进行的H_2O氧化是耗时的。在这项研究中,我们将微波技术与H_2O氧化(M-WO)集成在一起,以加速ZnO的生长。微波辅助合成不仅可以缩短加工时间,而且可以提高产品收率,提高产品纯度。在此,将玻璃/ ITO / Zn薄膜样品浸入装有纯H_2O的烧杯中,并放置在微波炉内。通过在500 W下施加微波功率0.5-2 h来检查辐照时间的影响。图1(a)显示了M-WO工艺后得到的纳米结构(NSs)。 30分钟后立即形成平顶的ZnO纳米棒(NRs)。然后在1小时后,平顶NR演变为尖峰NR。将辐照时间增加到1.5小时会引发一些纳米管(NTs)的形成,这可能是由于沿ZnO晶体的(001)平面自然选择蚀刻所致。最后,所有现有的NRs在2小时后都被转化为NTs,从而形成了蜂窝状结构。单个平顶ZnO NR的HRTEM和NBD模式如图1(b)所示。可以看出,NR是高度结晶的,其晶格间距约为0.28 nm,与ZnO晶格的(100)间距相对应。为了评估ZnO薄膜在实际设备中的总体适用性,我们通过稳态PL分析(图1(c))检查了钙钛矿薄膜的ETL能力。当与ZnO薄膜接触时,钙钛矿的发射明显被淬灭,表明电子转移。这些初步结果揭示了我们的ZnO膜作为ETL的巨大潜力,不仅对钙钛矿型太阳能电池而且对其他光伏和光电器件也是如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号