【24h】

Ultrathin tunable terahertz absorbers based on electrostatically actuated metamaterial

机译:基于静电驱动超材料的超薄可调谐太赫兹吸收器

获取原文

摘要

High performance tunable absorbers for terahertz (THz) frequencies will be crucial in advancing applicationssuch as single-pixel imaging and spectroscopy. Metamaterials provide many new possibilities for manipulatingelectromagnetic waves at the subwavelength scale. Due to the limited response of natural materials to terahertzradiation, metamaterials in this frequency band are of particular interest.The realization of a high-performance tunable (THz) absorber based on microelectromechanical system(MEMS) is challenging, primarily due to the severe mismatch between the actuation range of most MEMS(on the order of 1-10 microns) and THz wavelengths on the order of 100-1000 microns. Based on a metamaterialdesign that has an electromagnetic response that is extremely position sensitive, we combine meta-atoms withsuspended at membranes that can be driven electrostatically. This is demonstrated by using near-eld couplingof the meta-atoms to create a substantial change in the resonant frequency.The devices created in this manner are among the best-performing tunable THz absorbers demonstrated todate, with an ultrathin device thickness ( 1/50 of the working wavelength), absorption varying between 60% and80% in the initial state when the membranes remain suspended, and with a fast switching speed ( 27 us). In thesnap-down state, the resonance shifts by γ >200% of the linewidth (14% of the initial resonance frequency), andthe absorption modulation measured at the initial resonance can reach 65%.
机译:太赫兹(THz)频率的高性能可调吸收器在不断发展的应用中将至关重要 例如单像素成像和光谱学。超材料为操纵提供了许多新的可能性 亚波长范围的电磁波。由于天然材料对太赫兹的响应有限 辐射,该频段中的超材料特别受关注。 基于微机电系统的高性能可调(THz)吸收器的实现 (MEMS)具有挑战性,主要是因为大多数MEMS的驱动范围之间存在严重的不匹配 (大约1-10微米)和太赫兹波长大约100-1000微米。基于超材料 设计具有对位置极为敏感的电磁响应,我们将亚原子与 暂停 在可以静电驱动的膜上这通过使用近场耦合来证明 的亚原子形成共振频率的实质性变化。 以这种方式创建的器件是性能最佳的可调太赫兹吸收器之一, 日期,具有超薄的设备厚度(工作波长的1/50),吸收率在60%和 初始状态下,膜保持悬浮状态时有80%的样品,并且开关速度快(27 us)。在里面 急停状态,共振偏移 γ> 200%的线宽(初始谐振频率的14%),以及 在初始共振时测得的吸收调制可以达到65%。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号