【24h】

Model-based confocal uorescence microscopy measurements of submerged micro geometries

机译:基于模型的共焦浸没微观几何结构的荧光显微镜测量

获取原文

摘要

The challenging environment of in situ micro-geometry measurements in uids (e.g. for laser- or electrochemicalmachining), such as refractive index uctuations, small dimensions and high surface gradients, hinder manyconventional measurement techniques. Confocal microscopy remains most suitable with uncertainties < 1 μm,but complex micro-geometries with edge slopes > 75° often produce unwanted artifacts. To prevent the formationof artifacts, the isotropically emitting uorescence light of a uid layer covering the specimen is measuredinstead. The geometry reconstruction for in situ-relevant uid depths ffi 100 μm is not trivial and requires asignal model that includes the contributions of light absorption and the confocal volume shape. For modelvalidation, the surface position of a reference step-object (nominal height: 250 μm), submerged in a uid layer> 1 mm, is determined using a uorescence signal model that isfitted to the measured data. First experimentsyield a step height uncertainty of 8:8 μm, about one order of magnitude above the requirement. In order toidentify optimization potential, the minimum achievable measurement uncertainty is estimated for both a signalwith experiment-equivalent variance and a shot noise limited signal. The estimated uncertainties are 3:8 μmand 0:1 μm, respectively, and decrease with lower uorophore concentration and uid thickness. The dfferingexperimental and estimated uncertainties result from model simplifications such as the missing contributionof reected light at the specimen surface where the current model assumes that the confocal volume is cutoff. Expanding the model promises to reduce the measurement uncertainty and to converge estimation andexperiment, enabling geometry measurements of complex micro-geometries with different surface reectivitiesunder challenging in situ conditions in uids.
机译:具有挑战性的现场微几何测量环境 uids(例如用于激光或电化学 机械加工),例如折射率 外观,小尺寸和高表面坡度阻碍了许多 传统的测量技术。共聚焦显微镜仍最适合不确定度<1μm的情况, 但是边缘坡度> 75°的复杂微几何结构通常会产生不需要的伪影。防止形成 各向同性发射的伪影 a的发色光 测量覆盖样品的uid层 反而。原位相关的几何重建 uid深度ffi 100μm并非微不足道,需要一个 信号模型,包括光吸收和共焦体积形状的贡献。对于模型 验证中,将参考阶梯对象的表面位置(标称高度:250μm)浸入 uid层 > 1 mm,使用 适合测量数据的荧光信号模型第一次实验 产生的阶跃高度不确定度为8:8μm,比要求高约一个数量级。为了 确定最佳潜力,估计两个信号的最小可实现测量不确定度 实验等效方差和散粒噪声限制信号。估计不确定度为3:8μm 和0:1μm,并随着降低而降低 尿液浓度和 uid的厚度。不同的 实验和估计的不确定性来自模型简化,例如缺少贡献 的 在当前模型假设共焦体积被切掉的样品表面上检测到的光 离开。扩展模型有望减少测量不确定性并收敛估计和 实验,可以对具有不同表面粗糙度的复杂微几何进行几何测量 实体性 在充满挑战的原地条件下 uids。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号