首页> 外文会议>Conference on Modeling Aspects in Optical Metrology >Model-based confocal uorescence microscopy measurements of submerged micro geometries
【24h】

Model-based confocal uorescence microscopy measurements of submerged micro geometries

机译:基于模型的共焦淹没微观几何形状的荧光显微镜测量

获取原文
获取外文期刊封面目录资料

摘要

The challenging environment of in situ micro-geometry measurements in uids (e.g. for laser- or electrochemicalmachining), such as refractive index uctuations, small dimensions and high surface gradients, hinder manyconventional measurement techniques. Confocal microscopy remains most suitable with uncertainties < 1 μm,but complex micro-geometries with edge slopes > 75° often produce unwanted artifacts. To prevent the formationof artifacts, the isotropically emitting uorescence light of a uid layer covering the specimen is measuredinstead. The geometry reconstruction for in situ-relevant uid depths 100 μm is not trivial and requires asignal model that includes the contributions of light absorption and the confocal volume shape. For modelvalidation, the surface position of a reference step-object (nominal height: 250 μm), submerged in a uid layer> 1 mm, is determined using a uorescence signal model that isfitted to the measured data. First experimentsyield a step height uncertainty of 8:8 μm, about one order of magnitude above the requirement. In order toidentify optimization potential, the minimum achievable measurement uncertainty is estimated for both a signalwith experiment-equivalent variance and a shot noise limited signal. The estimated uncertainties are 3:8 μmand 0:1 μm, respectively, and decrease with lower uorophore concentration and uid thickness. The dfferingexperimental and estimated uncertainties result from model simplifications such as the missing contributionof reected light at the specimen surface where the current model assumes that the confocal volume is cutoff. Expanding the model promises to reduce the measurement uncertainty and to converge estimation andexperiment, enabling geometry measurements of complex micro-geometries with different surface reectivitiesunder challenging in situ conditions in uids.
机译:原位微观几何测量的具有挑战性环境UID(例如激光或电化学加工),如折射率uctuations,小尺寸和高表面梯度,妨碍很多传统测量技术。共聚焦显微镜仍然最适合不确定性<1μm,但具有边缘斜坡的复杂微观几何形状> 75°经常产生不需要的伪影。防止形成文物,各向同性发光景光的测量覆盖样本的UID层反而。原位相关的几何重构UID深度100μm不是微不足道的并且需要一个信号模型,包括光吸收和共聚焦体积形状的贡献。对于模型验证,参考步骤对象的表面位置(标称高度:250μm),浸没在一个uid层> 1 mm,使用a确定关于测量数据的户晶信号模型。第一个实验产生8:8μm的台阶高度不确定度,高于要求的大约一个级。为了识别优化电位,估计最小可实现的测量不确定性对于信号具有实验等效方差和镜头噪声有限的信号。估计的不确定性是3:8μm和0:1μm,分别较低uorophore浓度和UID厚度。漂白实验和估计的不确定性是由缺失贡献等模型简化产生的Re.当前模型假定的标本表面处的射灯假定共聚焦体积被切割离开。扩展模型承诺以减少测量不确定性并收敛估计和实验,使具有不同表面的复杂微观几何的几何测量自我在原地条件下具有挑战性UID。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号