首页> 外文会议>AIAA SciTech Forum and Exposition >Modeling Conservation of Angular Momentum for Robotic In-Space Assembly Systems
【24h】

Modeling Conservation of Angular Momentum for Robotic In-Space Assembly Systems

机译:机器人空间装配系统的角动量守恒建模

获取原文

摘要

To expand humanity's capability to survive and thrive in-space, the National Aeronautics and Space Administration (NASA) is investing in the development of robotic assembly systems that will streamline the process of manufacturing and maintaining human habitats and other scientific research tools in-space. Due to its repeated successful use in the aeronautics and astronautics research fields, the Langley Standard Real-time Simulation in C++ (LaSRS++) framework-a high-fidelity aircraft and spacecraft simulation framework developed at NASA Langley Research Center — is an excellent candidate for modeling the dynamics of these robotic in-space assembly systems. To increase vehicle modeling flexibility in LaSRS++, changes are made to its dynamic equations of motion and mass property calculations in order to account for conservation of angular momentum of a vehicle with no external moments or forces explicitly provided and a changing inertia tensor. Tests are developed to ensure all changes to the framework behave as expected, including the dynamic testing of a low-fidelity, shape-changing, in-space robotic vehicle. The results of the tests show that angular momentum of the vehicle is conserved during operation, the added capabilities to the framework are valid, and therefore they can be implemented when modeling higher-fidelity in-space robotic mechanisms in LaSRS++. Future improvements may be made by adjusting the mass property computation method to accommodate forward kinematic modeling of robotic manipulators, as well as creating a vehicle model for the Langley-developed Tension Actuated Lightweight In-Space MANipuIator (TALISMAN). The new capabilities added to the LaSRS++ simulation framework will allow researchers to easily model the dynamic behavior of robotic in-space assembly systems prior to launch and deployment, reducing operational risks and ensuring mission success.
机译:为了扩大人类生存和茁壮成长空间的能力,美国国家航空航天局(NASA)正在投资机器人装配系统的发展,该系统将简化制造和维护人类栖息地和其他科研工具的空间内的过程。由于其在航空和航天研究领域的重复使用,C ++(LASRS ++)框架中的Langley标准实时仿真 - 在NASA Langley Research Center开发的高保真飞机和航天器仿真框架 - 是建模的优秀候选者这些机器人空间组装系统的动态。为了提高Lasrs ++中的车辆建模灵活性,改变了其动态运动和质量计算的动态方程,以便守护车辆的角动量,没有明确提供的外部时刻或力,并且惯性扭转变化。开发测试以确保对框架的所有变化如预期的行为,包括低保真,形状变化,空间机器人车辆的动态测试。测试结果表明,在运行期间,车辆的角动量是节省的,框架的附加功能是有效的,因此可以在Lasrs ++中建模高保真空间机器人机制时实现。可以通过调整质量性计算方法来容纳机器人操纵器的前向运动建模,以及为兰利开发的张力制造轻量级空间式人物设计器(护身符)的车辆模型来进行改进。添加到LASRS ++模拟框架的新功能将允许研究人员在发布和部署之前轻松地模拟机器人空间组装系统的动态行为,降低运营风险并确保使命成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号