首页> 外文会议>AIAA SciTech Forum and Exposition >Experimental Validation of Nozzle Flow Simulations for Rotating Detonation Rocket Engines
【24h】

Experimental Validation of Nozzle Flow Simulations for Rotating Detonation Rocket Engines

机译:旋转爆轰火箭发动机喷嘴流场模拟的实验验证

获取原文

摘要

Rotating detonation engines (RDEs) promise increased thermodynamic performance that may significantly enhance the capabilities of current rocket platforms. Little work has been conducted thus far to characterize the effect of nozzle design on high chamber pressure RDEs. Previous computational work [1] was completed to understand the nozzle performance of the Purdue methane/oxygen rocket RDE. A new experimental study on a similar kerosene/oxygen RDE was conducted to validate the results of the computational study. Both a nozzleless geometry and several aerospike designs were hot-fire tested. New pressure instrumentation on the different nozzle surfaces was included to better understand the flow physics unique to RDE chamber exit conditions. Both the previous computational study and the new experimental results confirmed that for a nozzleless geometry, the RDE cycle enhances suction on the base region, an important result to determining RDE engine performance separate from nozzle effects. While the aerospike experiments showed agreement with computational results, delay of flow separation due to the RDE cycle could not be confirmed. Two aerospike geometries with different nozzle pressure ratios were also experimentally evaluated. This study showed the necessity for 3D transient fluid dynamics computations to better understand the RDE flow field with nozzle geometries.
机译:旋转爆震发动机(RDE)有望提高热力学性能,这可能会大大增强当前火箭平台的性能。迄今为止,几乎没有工作来表征喷嘴设计对高腔室压力RDE的影响。先前的计算工作[1]已完成,以了解普渡大学甲烷/氧气火箭RDE的喷嘴性能。对类似的煤油/氧气RDE进行了新的实验研究,以验证计算研究的结果。无喷嘴几何形状和多种气雾化设计均经过了热火测试。包括了在不同喷嘴表面上的新压力仪表,以更好地了解RDE腔室出口条件所独有的流动物理原理。先前的计算研究和新的实验结果均证实,对于无喷嘴几何形状,RDE循环可增强基部区域的吸力,这是独立于喷嘴效应确定RDE发动机性能的重要结果。尽管气雾实验与计算结果吻合,但无法确定由于RDE循环而导致的流分离延迟。还通过实验评估了两种具有不同喷嘴压力比的气雾化几何形状。这项研究表明需要进行3D瞬态流体动力学计算,以更好地了解带有喷嘴几何形状的RDE流场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号