首页> 外文会议>AIAA SciTech Forum and Exposition >Autonomous Robot Swarms for Off-World Construction and Resource Mining
【24h】

Autonomous Robot Swarms for Off-World Construction and Resource Mining

机译:自主机器人蜂拥而至的非常规建筑和资源开采

获取原文

摘要

Kickstarting the space economy requires identification of critical resources that can lower the cost of space transport, sustain logistic bases and communication relay networks between major nodes in the network. One important challenge with this space-economy is ensuring the low-cost transport of raw materials from one gravity-well to another. The escape delta-v of 11.2 km/s from Earth makes this proposition very expensive. Transporting materials from the Moon takes 2.4 km/s and from Mars 5.0 km/s. Based on these factors, the Moon and Mars have the potential to export material into this space economy. Water has been identified as a critical resource both to sustain human-life but also for use in propulsion, attitude-control, power, thermal storage and radiation protection systems. Water may be obtained off-world through In-Situ Resource Utilization (ISRU) in the course of human or robotic space exploration. There is also important need for construction materials such as aluminum, iron/steel, and titanium. Based upon these important findings, we have developed an energy model to determine the feasibility of developing a mining base on the Moon and Mars. These mining base mine and principally exports water, aluminum, titanium and steel. The moon has significant reserves of water known to exists at the permanently shadowed crater regions and there are significant sources of titanium, aluminum and iron throughout the Moon's surface. Mars also has significant quantities of water in the form of hydrates, in addition to reserves of iron, titanium and aluminum Our designs for a mining base utilize renewable energy sources namely photovoltaics and solar-thermal concentrators to provide power to construct the base, keep it operational and export water and other resources using a Mass Driver. Using the energy model developed, we will determine the energy per Earth-day to export 100 tons each of water, titanium, aluminum and low-grade steel into escape velocity of the Moon and Mars. We perform a detailed comparison of the energy required for construction of similar bases on the Moon and Mars, in addition to the operating energy required for regolith excavation, processing, refining and finally transport off-the-body. In this process, we consider multiple critical technologies including use of humans predominantly to construct and operate the base and alternately the use of robot teams. In addition, we also consider the use of additive manufacturing to print a base out of local materials or use of traditional building techniques. Our comparative study finds that an equivalent Martian base requires twice as much energy for construction than a lunar base, this is to enable the base to withstand the higher gravity. This also accounts for the energy required to process the local raw material into construction feedstock. A Martian base requires significantly more energy for day to day operations due to the higher gravity, requiring 2.4-folds more energy, primarily for operating the mass-driver to export the 400-tons of export material per Earth day. More energy is needed on Mars for material extraction and for transport than the Moon, this is despite the fact that Mars gets 40% of the solar insolation of Earth. Transportation of these export resources from the Earth-Moon Lagrange points to Mars is estimated to be possible using very-low energy methods. The use of an all-robot base also minimizes the challenges of human adaptation to the low-gravity environment. These factors show a compelling reason for utilizing the Moon as a resource export economy first.
机译:快速启动空间经济需要确定关键资源,这些资源可以降低空间运输成本,维持物流基础以及网络主要节点之间的通信中继网络。这种空间经济的一个重要挑战是确保低成本地将原材料从一个重力井运到另一个重力井。离地球11.2 km / s的逃逸delta-v使得这个提议非常昂贵。从月球上运输物料的速度为2.4 km / s,从火星上运输物料的速度为5.0 km / s。基于这些因素,月球和火星有潜力将物质出口到这种空间经济中。水被认为是维持人类生命的重要资源,也可用于推进,姿态控制,动力,蓄热和辐射防护系统。在人类或机器人进行太空探索的过程中,可以通过就地资源利用(ISRU)来获取水。还非常需要建筑材料,例如铝,铁/钢和钛。基于这些重要发现,我们开发了一种能源模型,以确定在月球和火星上开发采矿基地的可行性。这些采矿基地矿主要出口水,铝,钛和钢。月球有大量的水,已知存在于永久阴影的陨石坑区域,并且整个月球表面都有大量的钛,铝和铁。除了铁,钛和铝的储量外,火星还具有大量的水合物形式的水。我们的采矿基地设计利用可再生能源,即光伏发电和太阳能集热器,为基地建设提供动力,并保持下去使用“大众驱动程序”来运营和出口水资源及其他资源。使用开发的能量模型,我们将确定每个地球日将100吨水,钛,铝和低等级钢分别出口到月球和火星的逃逸速度时的能量。我们对在月球和火星上建造类似基地所需的能源进行了详细的比较,此外还进行了重新碎石的挖掘,加工,精炼以及最终运离人体所需的运行能源。在此过程中,我们考虑了多种关键技术,包括主要使用人员来构建和操作基地以及交替使用机器人团队。此外,我们还考虑使用增材制造技术来印刷本地材料或使用传统建筑技术。我们的比较研究发现,等效的火星基地建设所需的能量是月球基地的两倍,这是为了使基地能够承受更高的重力。这也说明了将当地原料加工成建筑原料所需的能量。火星基地由于更高的重力而在日常操作中需要更多的能量,需要2.4倍以上的能量,主要是为了操作质量驱动程序,每个地球日出口400吨的出口物料。尽管事实上火星获得了地球40%的日照量,但在火星上用于物质提取和运输所需的能量却比月球还要多。据估计,使用极低能耗的方法可以将这些出口资源从月球地球拉格朗日点运输到火星。全机器人基础的使用还最大程度地降低了人类适应低重力环境的挑战。这些因素表明了首先利用月球作为资源出口经济的令人信服的理由。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号