首页> 外文会议>AIAA SciTech Forum and Exposition >Nanoscale Flow Choking and Spaceflight Effects on Cardiovascular Risk of Astronauts - A New Perspective
【24h】

Nanoscale Flow Choking and Spaceflight Effects on Cardiovascular Risk of Astronauts - A New Perspective

机译:纳米级流动窒息与宇航员心血管风险的空间效果 - 一种新的视角

获取原文

摘要

Of late, authors reported conclusively through the state-of-the-art closed-form analytical methodology that the asymptomatic stroke and the transient-ischemic-attack could occur due to the Sanal flow choking (PMCID: PMC7267099). Sanal flow choking leads to the shock wave generation causing arterial stiffening in the arteries particularly with bifurcation regions. At the internal flow choking (biofluid/Sanal flow choking) condition, the systolic-to-diastolic blood pressure ratio (BPR) is a unique function of the blood/biofluid heat capacity ratio (BHCR). The physical situation of internal flow choking in the micro/nanoscale fluid flows in the circulatory system is more susceptible at microgravity condition due to altered variations of blood viscosity, turbulence and the BPR. During a long-term space mission, the major factor that affects cardiovascular dysfunctions is the absence of gravity. Note that microgravity environment decreases plasma volume and increases the hematocrit compared with the situation on the earth surface, which increases the relative viscosity of blood. Since blood viscosity strongly depends on hematocrit there are possibilities of an early Sanal flow choking in microgravity environment due to an enhanced boundary layer blockage. While using the lopsided blood-thinners and/or drugs with anticoagulant property, the dynamic viscosity of blood decreases and as a result Reynolds number increases and the laminar flow could be disrupted and become turbulent and thereby the boundary-layer-blockage factor increases leading to an early internal flow choking. As the pressure of the nanoscale biofluid flows rises, average-mean-free-path diminishes and thus, the Knudsen number lowers heading to a zero-slip wall-boundary condition with compressible viscous flow effect, which increases the risk of internal flow choking in the cardiovascular system at gravity and the microgravity environment. In this paper analytical, in vitro and in silico results are reported to establish the concept of the occurrence of Sanal flow choking in the gravity and micro gravity environment in micro/nanoscale circulatory systems. We could establish herein that the relatively high and the low blood-viscosity are cardiovascular risk factors during the spaceflight. We concluded that for a healthy-life all subjects (human being / animals) in the earth and in the outer space with high BPR necessarily have high BHCR. We also concluded that for reducing the cardiovascular risk, all the astronauts/cosmonauts should maintain the BPR lower than the lower critical hemorrhage index (LCHI) as dictated by the lowest heat capacity ratio (HCR) of the gas generating from the biofluid/blood for prohibiting the internal flow choking during the space travel. We recommend all astronauts/cosmonauts should wear ambulatory blood pressure and thermal level monitoring devices similar to a wristwatch throughout the space travel for the diagnosis, prognosis and prevention of internal flow choking leading to asymptomatic cardiovascular diseases. We concluded without any ex vivo or in vivo studies that suppressing the turbulence level and simultaneously reducing the blood viscosity are the key tasks to prevent internal flow choking for reducing the cardiovascular risk in earth as well as in microgravity conditions. This could be achieved by increasing the thermal tolerance level of blood by increasing the heat capacity ratio of blood and/or decreasing blood pressure ratio.
机译:较晚,作者通过最先进的闭合形式分析方法进行了结论,由于血汗流动窒息可能发生无症状卒中和瞬态缺血 - 攻击(PMCID:PMC7267099)。 SALAL流量窒息导致冲击波产生,导致动脉中的动脉匀整,特别是分叉区域。在内部流动窒息(Biofluid / Salal流动窒息)条件下,收缩至舒张血压比(BPR)是血液/生物流体热容比(BHCR)的独特功能。由于血液粘度,湍流和BPR的变化改变,循环系统中的微/纳米级流体流动中的内部流量窒息的物理情况在微匍匐状态下更易感。在长期空间任务期间,影响心血管功能障碍的主要因素是没有重力。注意,微匍匐环境降低了血浆体积并与地球表面上的情况相比增加了血细胞比容,这增加了血液的相对粘度。由于血液粘度强烈取决于血细胞比容,因此由于增强的边界层堵塞,微重力环境中存在早期的姿势堵塞的可能性。在使用与抗凝血性的不平衡血液稀释剂和/或药物的同时,血液的动态粘度降低,随着结果的雷诺数增加,并且层流量可能被破坏并变得湍流,从而边界层阻塞因子增加早期内部流动窒息。随着纳米级生物流体流动的压力升高,平均平均分度降低,因此,knudsen数降低到具有可压缩粘性流动效果的零滑壁边界条件,这增加了内部流量窒息的风险重力和微匍匐环境的心血管系统。在本文中,据报道,在体外和硅的结果中,在微/纳米级循环系统中建立了在重力和微重力环境中静脉流动窒息的发生的概念。我们可以在本文中建立,在空间期间,相对较高和低血液粘度是心血管危险因素。我们得出结论,在地球上的健康生活中的所有受试者(人类/动物)以及高BPR的外层空间都必须具有高BHCR。我们还得出结论,为了降低心血管风险,所有宇航员/宇航员都应将BPR低于低临界出血指数(LCHI),如从生物流体/血液产生的气体的最低热容比(HCR)所示禁止在空间旅行期间内部流动窒息。我们建议所有宇航员/宇航员都应该佩戴动物血压和热级监测装置,类似于整个空间旅行的手表,用于诊断,预后和预防内部流动窒息导致无症状心血管疾病。我们结束了没有任何离体或体内研究,抑制湍流水平并同时降低血液粘度是防止内部流动窒息以降低地球内的心血管风险以及微匍匐条件的关键任务。这可以通过增加血液和/或降低血压比的热容量来增加血液的热耐受水平来实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号