首页> 外文会议>IEEE International Symposium on Circuits and Systems >Learning Low-Rank Structured Sparsity in Recurrent Neural Networks
【24h】

Learning Low-Rank Structured Sparsity in Recurrent Neural Networks

机译:在递归神经网络中学习低秩结构稀疏性

获取原文
获取外文期刊封面目录资料

摘要

Acceleration and wide deployability in deeper recurrent neural network is hindered by high demand for computation and memory storage on devices with memory and latency constraints. In this work, we propose a novel regularization method to learn hardware-friendly sparse structures for deep recurrent neural networks. Considering the consistency of dimension in continuous time units in recurrent neural networks, low-rank structured sparse approximations of the weight matrices are learned through the regularization without dimension distortion. Our method is architecture agnostic and can learn compact models with higher degree of sparsity than the state-of-the-art structured sparsity learning method. The structured sparsity rather than random sparsity also facilitates the hardware implementation. Experiments on language modeling of Penn TreeBank dataset show that our approach can reduce the parameters of stacked recurrent neural network model by over 90% with less than 1% perplexity loss. It is also successfully evaluated on larger highway neural network model with word2vec dataset like enwik8 and text8 using only 20M weights.
机译:在具有内存和延迟约束的设备上,对计算和内存存储的高需求阻碍了更深层次的递归神经网络中的加速和广泛的可部署性。在这项工作中,我们提出了一种新颖的正则化方法来学习用于深度递归神经网络的硬件友好的稀疏结构。考虑到递归神经网络中连续时间单位的维数一致性,可通过不带维数失真的正则化学习权重矩阵的低秩结构稀疏近似。与最新的结构化稀疏性学习方法相比,我们的方法与体系结构无关,并且可以学习具有更高稀疏度的紧凑模型。结构化的稀疏性而不是随机性的稀疏性也促进了硬件的实现。对Penn TreeBank数据集的语言建模的实验表明,我们的方法可以将堆叠式递归神经网络模型的参数减少90%以上,而困惑度损失少于1%。仅使用20M权重的word2vec数据集(例如enwik8和text8),就可以在较大的高速公路神经网络模型上成功地对其进行评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号