首页> 外文会议>IEEE International Solid- State Circuits Conference >9.1 A Current-Sensing Front-End Realized by A Continuous-Time Incremental ADC with 12b SAR Quantizer and Reset-Then-Open Resistive DAC Achieving 140dB DR and 8ppm INL at 4kS/s
【24h】

9.1 A Current-Sensing Front-End Realized by A Continuous-Time Incremental ADC with 12b SAR Quantizer and Reset-Then-Open Resistive DAC Achieving 140dB DR and 8ppm INL at 4kS/s

机译:9.1由具有12b SAR量化器和复位-开路电阻DAC的连续时间增量ADC实现的电流检测前端,在4kS / s时可实现140dB DR和8ppm INL

获取原文

摘要

High-precision current-measurement front-ends are widely used in various applications, such as photoplethysmography (PPG) recording by biomedical sensors and molecular-concentration detection by electrochemical sensors. They usually require a low noise level down to pA to monitor small signal variations and a wide input range over µA to avoid saturation caused by large input fluctuations. The low-noise-level and wide-input-range requirements typically result in a dynamic range (DR) greater than 120dB. Prior high-DR current measurement front-ends either operate in the time domain using a capacitive-feedback TIA to integrate the input current and then digitize the output voltage via a digital counter [1], or operate in the frequency domain using an Hourglass ADC [2] or asynchronous DFFs [3]. Such methods can reduce the noise level by extending the integration time but suffer from a low conversion frequency (Fconv) as a result. To extend the input range, DC cancellation servo loops [1] or predictive DACs [2] are adopted, but the limited loop bandwidth results in a slow settling or saturation when the signal experiences a rapid change. Utilizing these methods, the previous works achieved an effective DR of ~120dB at Fconv of 300-500Hz. This work adopts a different approach of simply increasing the DR of a continuous-time (CT) incremental ADC (IADC) to 140dB without any of the aforementioned methods and achieve a high Fconv of 4 kHz. While the noise level and input range of the current-input CT-IADC are both determined by the feedback DAC within the modulator loop, this high DR is realized by increasing the number of DAC MSBs to extend the input range and disconnecting the inactive DAC cells to remove their noise contribution. The noise level is further minimized by adding extra LSB bits so that only the small LSB cells are active when the input approaches 0. In this work, an 11b resistive DAC (RDAC) together with a 12b SAR quantizer are implemented to achieve an input range of 200µA. Meanwhile, a tri-level {−1, 0, +1} DAC with reset-then-open (RTO) operation is introduced to disconnect the MSB cells dynamically without the issue of inter-symbol interference (ISI). To linearize the 11b DAC, a hybrid mismatch error shaping (HMES) scheme which combines segmented noise-shaped scrambling (SNSS) [4] and mismatch error shaping (MES) [5] is presented. This IADC with on-chip voltage references consumes 1.011mW from 1.2V and achieves >200dB FoM with an integral non-linearity (INL) of 8ppm.
机译:高精度电流测量前端广泛用于各种应用中,例如通过生物医学传感器进行的光电容积描记(PPG)记录以及通过电化学传感器进行的分子浓度检测。它们通常需要低至pA的低噪声电平,以监视小的信号变化,并具有超过µA的宽输入范围,以避免由于大输入波动而引起的饱和。低噪声电平和宽输入范围的要求通常会导致动态范围(DR)大于120dB。先前的高DR电流测量前端要么在时域中使用电容反馈TIA积分输入电流,然后通过数字计数器[1]将输出电压数字化,要么在时域中使用Hourglass ADC操作[2]或异步DFF [3]。这样的方法可以通过延长积分时间来降低噪声水平,但转换频率较低(F 转换 ) 因此。为了扩展输入范围,采用了DC抵消伺服环路[1]或预测DAC [2],但是有限的环路带宽会导致信号快速变化时建立或饱和速度变慢。利用这些方法,先前的工作在F处实现了约120dB的有效DR。 转换 300-500Hz。这项工作采用了一种不同的方法,简单地将连续时间(CT)增量ADC(IADC)的DR增加到140dB,而无需采用上述任何方法,并实现了较高的F 转换 4 kHz。虽然电流输入CT-IADC的噪声电平和输入范围均由调制器环路内的反馈DAC确定,但这种高DR可以通过增加DAC MSB的数量来扩展输入范围并断开不活动的DAC单元来实现。消除它们的噪声影响。通过添加额外的LSB位进一步降低噪声电平,以便当输入接近0时只有小的LSB单元处于活动状态。在这项工作中,实现了11b电阻DAC(RDAC)和12b SAR量化器,以实现输入范围200µA。同时,引入了具有复位-然后-打开(RTO)操作的三级{-1,0,+1} DAC,以动态断开MSB单元,而不会出现符号间干扰(ISI)。为了使11b DAC线性化,提出了一种混合失配误差整形(HMES)方案,该方案结合了分段噪声整形加扰(SNSS)[4]和失配误差整形(MES)[5]。这款具有片内基准电压源的IADC从1.2V消耗1.011mW的功率,FoM大于200dB,积分非线性(INL)为8ppm。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号