首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >MODEL AND EXPERIMENTAL VERIFICATION OF THE DYNAMIC FORCED PERFORMANCE OF A TIGHTLY SEALED SQUEEZE FILM DAMPER SUPPLIED WITH A BUBBLY MIXTURE
【24h】

MODEL AND EXPERIMENTAL VERIFICATION OF THE DYNAMIC FORCED PERFORMANCE OF A TIGHTLY SEALED SQUEEZE FILM DAMPER SUPPLIED WITH A BUBBLY MIXTURE

机译:含气泡混合物的紧密密封薄膜阻尼器动力强迫性能的模型和实验验证

获取原文

摘要

Practice and experiments with squeeze film dampers (SFDs) sealed with piston rings (PRs) show the lubricant exits through the PR slit, i.e. the gap made by the PR abutted ends when installed, forced as a jet during the portion of a rotor whirl cycle generating a positive squeeze film pressure. In the other portion of a whirl cycle, a sub ambient dynamic pressure ingests air into the film that mixes with the lubricant to produce a bubbly mixture. To reduce persistent air ingestion, commercial air breathing engines utilizing PRSFDs demand of a sufficiently large lubricant supply pressure (P_s), and hence a larger flow rate that is proportional to the journal squeeze velocity (v_s= amplitude r × frequency of motion to). The stringent requirement clearly limits the applicability and usefulness of SFDs. This paper presents a computational physics model for a sealed ends SFD operating with a mixture and delivers predictions benchmarked against profuse laboratory test data. The model implements a Reynolds equation adapted for a homogeneous bubbly mixture, includes temporal fluid inertia effects, and uses physics based inlet and outlet lubricant conditions through feed holes and PR slit, respectively. In the experiments for model validation, a SFD damper, 127 mm in diameter D, film land length L=25.4 mm (L/D=0.2), and radial clearance c=0.371 mm, is supplied with an air in ISO VG2 oil bubbly mixture of known GVF, zero (pure oil) to 50% in steps of 10%. The mixture supply pressure varies from P_s= 2.06 bar-g (30 psig) to 6.20 bar-g (90 psig). Located in grooves at the top and bottom of the journal, a piston ring (PR) and an O-ring (OR) seal the film land. The OR does not allow any oil leakage or air ingestion; hence the supplied mixture discharges thru the PR slit into a vessel submerged within a large volume of lubricant. Dynamic load tests with a single frequency ω, varying from 10 Hz to 60 Hz, produce circular centered orbits with amplitude r=0.2c. The measurements record the exerted forces and journal motions and an analysis delivers force coefficients, damping and inertia, representative of the exerted frequency range. The model predicts the pressure field and evolution of the gas volume fraction (GVF) within the film land and, in a simulated process replicating the experimental procedure, delivers representative force coefficients. For all P_s conditions, both predictions and tests show the SFD added mass coefficients significantly decrease as the inlet GVF (β_s) increases. The experimentally derived damping coefficients do not show a significant change, except for tests with the largest concentration of air (β_s=0.5). The predicted damping differs by 10% with the test derived coefficient which does not readily decrease as the inlet GVF (β_s) increases. The added mass coefficients, test and predicted, decrease with β_s, both being impervious to the magnitude of supply pressure. The test PRSFD shows a quadrature stiffness due to the sliding friction between the PR being pushed against the journal. An increase in supply pressure exacerbates this unique stiffness that may impair the action of the squeeze film to dissipate mechanical energy. The comprehensive test results, first of their kind, demonstrate that accurate modeling of SFDs operating with air ingestion remains difficult as the flow process and the paths of its major components (air and liquid) are rather complex.
机译:使用活塞环(PR)密封的挤压膜阻尼器(SFD)的实践和实验表明,润滑剂通过PR缝隙排出,即,安装时PR邻接端形成的间隙在转子涡旋循环的一部分期间被强制喷出产生正的挤压膜压力。在旋风循环的另一部分中,低于环境的动压将空气吸入薄膜中,并与润滑剂混合以产生气泡混合物。为了减少持续的空气摄入,利用PRSFD的商用空气呼吸发动机需要足够大的润滑剂供应压力(P_s),因此需要与轴颈挤压速度成正比的较大流量(v_s =振幅r×运动频率to)。严格的要求显然限制了SFD的适用性和实用性。本文介绍了使用混合气的密封端SFD的计算物理模型,并提供了根据大量实验室测试数据进行基准测试的预测。该模型实现了适用于均匀气泡混合物的Reynolds方程,包括时间流体惯性效应,并分别通过进料孔和PR缝使用基于物理的入口和出口润滑剂条件。在用于模型验证的实验中,向SFD阻尼器提供了直径为127毫米,直径为D的SFD阻尼器,膜凸脊长度L = 25.4毫米(L / D = 0.2)和径向间隙c = 0.371毫米,空气中装有ISO VG2气泡油已知GVF的混合物(零(纯油)至50%,以10%为步长)。混合物的供应压力从P_s = 2.06 bar-g(30 psig)到6.20 bar-g(90 psig)不等。活塞环(PR)和O形圈(OR)位于轴颈顶部和底部的凹槽中,以密封胶卷。手术室不允许漏油或吸入空气;因此,所提供的混合物通过PR缝隙排放到浸没在大量润滑剂中的容器中。在10 Hz到60 Hz之间变化的单个频率ω上的动载荷测试会产生幅度r = 0.2c的圆心轨道。测量结果记录了施加的力和轴颈运动,分析提供了代表施加频率范围的力系数,阻尼和惯性。该模型可预测压力场和薄膜区域内气体体积分数(GVF)的演变,并在模拟实验过程的模拟过程中提供代表性的力系数。对于所有P_s条件,预测和测试均显示,SFD的附加质量系数会随着入口GVF(β_s)的增加而显着降低。除空气浓度最大的试验(β_s= 0.5)外,实验得出的阻尼系数没有显着变化。预测的阻尼与测试得出的系数相差10%,该系数不会随着入口GVF(β_s)的增加而轻易降低。测试和预测的附加质量系数均随着β_s的减小而减小,两者均不受供应压力大小的影响。 PRSFD测试显示出正交刚度,这是由于PR被推向轴颈之间的滑动摩擦所致。供给压力的增加加剧了这种独特的刚度,该刚度可能损害挤压膜消散机械能的作用。全面的测试结果首次表明,由于进气过程及其主要成分(空气和液体)的流动过程和路径相当复杂,因此难以精确地模拟进气操作的SFD。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号