首页> 外文会议>IEEE International Conference on Big Data and Smart Computing >Hierarchical Topic Models for Expanding Category Hierarchies
【24h】

Hierarchical Topic Models for Expanding Category Hierarchies

机译:扩展类别层次结构的层次主题模型

获取原文

摘要

Category hierarchies often help users efficiently find information they need. When newly arrived documents convey new concepts that are not well covered in a hierarchy, it may be appropriate to split an existing category or insert a new category, to which related documents are relocated, in the hierarchy. However, it is often difficult to decide whether to create a new category or not (which we call the category-expansion problem). To address this problem, we propose a novel hierarchical topic model, which we call Generalized SSHLDA (G-SSHLDA). This model can insert a latent subtree at any level in an observed hierarchy. In the latent subtree, its root node can be an arbitrary observed node, and the other nodes are latent nodes. One of the nodes in the latent subtree is linked up with a deeper-level observed node. On the basis of these ideas, G-SSHLDA can automatically expand a category hierarchy that is associated with the target data collection. We demonstrate through experiments with two real-world datasets that G-SSHLDA effectively addresses the category-expansion problem.
机译:类别层次结构通常可以帮助用户有效地找到所需的信息。当新到达的文档传达的层次结构中未充分涵盖的新概念时,在层次结构中拆分现有的类别或插入相关文档将重新定位到的新类别可能是适当的。但是,通常很难决定是否创建一个新类别(我们称之为类别扩展问题)。为了解决此问题,我们提出了一种新颖的分层主题模型,我们将其称为通用SSHLDA(G-SSHLDA)。该模型可以在观察到的层次结构中的任何级别插入潜在子树。在潜在子树中,其根节点可以是任意观察到的节点,其他节点是潜在节点。潜在子树中的节点之一与更深层次的观察节点链接在一起。基于这些想法,G-SSHLDA可以自动扩展与目标数据收集关联的类别层次结构。通过对两个真实数据集的实验,我们证明了G-SSHLDA有效地解决了类别扩展问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号