首页> 外文会议>IEEE Aerospace Conference >Estimating Wheel Slip of a Planetary Exploration Rover via Unsupervised Machine Learning
【24h】

Estimating Wheel Slip of a Planetary Exploration Rover via Unsupervised Machine Learning

机译:通过无监督机器学习估算行星探测漫游车的车轮滑移

获取原文

摘要

Planetary exploration rovers often encounter imperfect traction and wheel slip, which negatively impacts navigation and in the worst case can result in permanent immobilization. Recent studies have applied machine learning to estimate rover wheel slip, which this paper extends via the implementation of three unsupervised learning algorithms: self-organizing maps, k-means clustering, and autoencoding. Unsupervised learning is preferred since labelled training data may be risky or time-consuming to obtain on site; each algorithm classifies the rover's current slip state into one of several discrete categories. Proprioceptive sensors are used to avoid added complexity and prevent a reliance on visual odometry. The algorithms are validated using sensor data from a planetary rover driving on a sandy incline, and performance is evaluated for different velocities, sensor inputs, slip classes, algorithm parameters, and data filters. Self-organizing maps (SOM) demonstrate the best slip classification accuracy, achieving 97% immobilization detection in the ideal two-class case. At rover-like speeds of 0.10 m/s, 88% accuracy is demonstrated for three classes. For ten slip classes, 71% accuracy is obtainable. Compared to SOM, k-means loses 5-30% accuracy and autoencoders lose 2-10% accuracy. SOM is most computationally intensive while k-means is least. An analysis of significant parameters for algorithm tuning displays accuracy benefits of up to 25 %, and mis-classifications can be further reduced by modifying class boundaries. The algorithms are generic and can be trained for different terrain, environment or vehicle parameters, and although some labelled data is needed to directly associate unsupervised clusters with slip classes, it is significantly less than what a fully-supervised algorithm requires. Unsupervised learning is thus considered promising for robust real-time rover slip estimation.
机译:行星探测车经常遇到不完善的牵引力和车轮打滑,这对航行产生不利影响,在最坏的情况下,可能会导致永久性固定。最近的研究已将机器学习应用于估计漫游者轮滑,本文通过以下三种无监督学习算法的实现扩展了该算法:自组织图,k均值聚类和自动编码。首选无监督学习,因为带标签的培训数据在现场获取可能会很冒险或很耗时。每种算法都将流动站的当前滑移状态分为几个离散类别之一。本体感受传感器用于避免增加复杂性并防止对视觉里程表的依赖。使用来自在砂质坡道上行驶的行星漫游车的传感器数据验证算法,并评估不同速度,传感器输入,滑差等级,算法参数和数据过滤器的性能。自组织图(SOM)表现出最佳的纸滑分类准确度,在理想的两类情况下可实现97%的固定检测。在流星般的速度为0.10 m / s的情况下,三级飞行器的精度达到88%。对于十个滑差等级,可获得71%的准确度。与SOM相比,k均值丢失5-30%的精度,而自动编码器则丢失2-10%的精度。 SOM在计算上最密集,而k均值最小。对用于算法调整的重要参数的分析显示出高达25%的准确性收益,并且可以通过修改类边界来进一步减少误分类。该算法是通用的,可以针对不同的地形,环境或车辆参数进行训练,尽管需要一些标记数据才能将无监督的聚类直接与滑动类别相关联,但它远远少于完全监督的算法所需的数据。因此,无监督学习被认为对稳健的实时流动站滑移估计很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号