首页> 外文会议>International Conference on High Performance Computing and Simulation >Workload-Aware Runtime Energy Management for HPC Systems
【24h】

Workload-Aware Runtime Energy Management for HPC Systems

机译:HPC系统的工作负载感知运行时能量管理

获取原文

摘要

Energy efficiency has become a crucial factor in high-performance computing, mainly due to its effect on operating costs and failure rates of computing platforms. To improve the energy efficiency of such systems, processors are equipped with low-power techniques such as dynamic voltage and frequency scaling (DVFS) and power capping. These techniques have to be controlled carefully as per the workload; otherwise, it may result in significant performance loss and/or power consumption due to system overheads (e.g. DVFS transition latency). Existing approaches are not effective in adapting to workload variations as they do not consider the combined effect of application compute-/memory-intensity, thread synchronization contention, and non?uniform memory accesses (NUMAs) owing to the underlying processor architecture. In this work, we propose a workload- aware runtime energy management technique that takes the aforementioned factors into account for efficient V-f control. The proposed technique measures the processor workload using Memory Accesses Per Micro-operation (MAPM), and also considers the thread synchronization contention and latency due to NUMAs to select an appropriate V-f setting. This approach also uses workload prediction for pro-active V-f control to improve the energy consumption and performance loss. The proposed technique has been implemented on the 12-core (24 threads) Intel Xeon E5-2630 and 61-core (244 threads) Xeon Phi many- core platforms, supporting per-core and system-wide DVFS, respectively. When evaluated with different application scenarios, results show an improvement in energy efficiency of up to 81.2% compared to existing approaches.
机译:能源效率已经成为高性能计算的一个关键因素,主要是由于其经营成本和计算平台的故障率的效果。为了改善这种系统的能量效率,处理器配备了低功耗技术,例如动态电压和频率调节(DVFS)和功率覆盖。这些技术都必须严格控制按工作量;否则,它可能会导致性能显著损失和/或功率消耗由于系统开销(例如DVFS过渡等待时间)。因为它们不考虑应用compute- /存储器强度,线程同步争用,并且由于底层处理器架构非?均匀存储器访问(NUMAs)的组合效果现有的方法不能有效地适应工作负载变化。在这项工作中,我们提出了感知工作量分担运行的能源管理技术,采用上述因素考虑在内高效V-f控制。所提出的技术措施使用存储器访问每微操作(MAPM)处理器的工作量,并且还考虑了线程同步的争用和延迟,由于NUMAs来选择适当的V-F设定。这种方法也使用工作负载预测为主动的V-f控制,以改善能源消耗和性能损失。所提出的技术已经被分别实现在12芯(24个线程)的Intel Xeon E5-2630和61芯(244个线程)至强披多对一芯平台,每个内核和全系统的DVFS支撑。当与不同的应用场景评估,结果显示在向上的能量效率的提高,以81.2%相比,现有的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号