首页> 外文会议>International Conference on High Performance Computing Simulation >Workload-Aware Runtime Energy Management for HPC Systems
【24h】

Workload-Aware Runtime Energy Management for HPC Systems

机译:HPC系统的工作负载感知运行时能源管理

获取原文

摘要

Energy efficiency has become a crucial factor in high-performance computing, mainly due to its effect on operating costs and failure rates of computing platforms. To improve the energy efficiency of such systems, processors are equipped with low-power techniques such as dynamic voltage and frequency scaling (DVFS) and power capping. These techniques have to be controlled carefully as per the workload; otherwise, it may result in significant performance loss and/or power consumption due to system overheads (e.g. DVFS transition latency). Existing approaches are not effective in adapting to workload variations as they do not consider the combined effect of application compute-/memory-intensity, thread synchronization contention, and non¬uniform memory accesses (NUMAs) owing to the underlying processor architecture. In this work, we propose a workload- aware runtime energy management technique that takes the aforementioned factors into account for efficient V-f control. The proposed technique measures the processor workload using Memory Accesses Per Micro-operation (MAPM), and also considers the thread synchronization contention and latency due to NUMAs to select an appropriate V-f setting. This approach also uses workload prediction for pro-active V-f control to improve the energy consumption and performance loss. The proposed technique has been implemented on the 12-core (24 threads) Intel Xeon E5-2630 and 61-core (244 threads) Xeon Phi many- core platforms, supporting per-core and system-wide DVFS, respectively. When evaluated with different application scenarios, results show an improvement in energy efficiency of up to 81.2% compared to existing approaches.
机译:能源效率已成为高性能计算的关键因素,主要是因为它对运营成本和计算平台的故障率有影响。为了提高此类系统的能效,处理器配备了低功耗技术,例如动态电压和频率缩放(DVFS)和功率上限。这些技术必须根据工作负载进行仔细控制。否则,由于系统开销(例如DVFS转换延迟),可能会导致严重的性能损失和/或功耗。现有的方法在适应工作负载变化方面是无效的,因为由于底层的处理器体系结构,它们没有考虑应用程序计算/内存强度,线程同步竞争和非均匀内存访问(NUMA)的综合影响。在这项工作中,我们提出了一种工作量感知的运行时能量管理技术,该技术将上述因素考虑在内,以实现有效的V-f控制。所提出的技术使用“每个微操作的内存访问”(MAPM)来衡量处理器的工作量,并且还考虑了由于NUMA而引起的线程同步争用和延迟,以选择适当的V-f设置。这种方法还将工作负载预测用于主动V-f控制,以改善能耗和性能损失。所提议的技术已在12核(24线程)Intel Xeon E5-2630和61核(244线程)Xeon Phi多核平台上实现,分别支持每核和全系统DVFS。在不同的应用场景下进行评估时,结果显示与现有方法相比,能效提高了81.2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号