首页> 外文会议>Device Research Conference >DC and flicker noise models for passivated single-walled carbon nanotube transistors
【24h】

DC and flicker noise models for passivated single-walled carbon nanotube transistors

机译:DC和钝化单壁碳纳米管晶体管的闪烁噪声模型

获取原文

摘要

DC and intrinsic low frequency noise properties of p-channel depletion-mode single-walled carbon nanotube field effect transistors (SWCNT-FETs) are investigated. To characterize the intrinsic noise properties a thin atomic layer deposited (ALD) HfO_2 gate dielectric which also works as a passivation layer is used to isolate SWCNT-FETs from environmental factors. The SWCNT-FET devices (a prototypical device with 1 CNT is shown in Fig. 1) are fabricated on Si substrate with a 300nm SiO_2 thermal oxide. Iron catalyst patterns are defined by UV photolithography with a 10μm spacing and subsequent iron deposition and lift-off. Single-walled carbon nanotubes (SWCNTs) are then synthesized by chemical vapor deposition (CVD) of methane on the substrate coated with patterned Iron catalyst. Source and drain contacts separated by 3μm are formed by electron beam deposition of Pd metal. A 20nm high-k HfO_2 film is deposited using ASM Micro-chemistry F-120 ALCVD Reactor at 300°C by using precursor of HfCl_4 and H_2O. Top Gate metal is defined by UV photolithography followed by the deposition of Cr/Au (10/50nm) with a minimum gate length of 1.5 μm. Cr/Au (20/450nm) metal interconnects are finally deposited on top of the source and drain Pd contacts. Fig. 2 shows transfer characteristics (I_d-V_(sg)) of a SWCNT-FET with 1.5μm gate-length and 3μm source-drain separation measured in the ambient environment when V_(sg) is swept from -1.5V to 1V and back to -1.5V. Virtually no hysteresis is observed in the IV characteristics of this device. Figure 3 shows I_d-V_(sd) characteristics of the same device with a maximum on current of 14μA and a maximum transconductance of 6μS at a drain bias of V_(sd) = 1.5V and gate bias of V_(sg) = -0.75V. A drain resistance (R) of 120kΩ due to schottky barrier at the drain contact was extracted from IV curves. Drain current in the linear region was modeled according to I_d = μ_(eff)C_g(V_(sg) + V_t)V_(sd)/(L + Rμ_(eff)C_g(V_(sg) + V_t)) where C_g = 2πε_0ε/cosh~(-1) (1 + h/r) ~ 28aF/nm presuming a cylindrical tube model is the gate capacitance per unit length per number of CNTs in the device structure, L is the gate length, ε_r = 15 is the effective dielectric constant of HfO_2, r = 0.5~2nm is the radius of CNT, h = 20nm is the gate oxide thickness and μ_(eff) is the effective field-effect mobility of holes in SWCNT channel. In the current saturation regime where V_(sd) ≥ V_(sg)+V_t+RI_d, SWCNT-FET has a semi-ballistic transport with a drain current modeled as I_d = K(V_(sg) + V_t)~(3/2)(1 + λV_(sd)), with effective transconductance K = 1.7×10~(-6) [A/V~(1.5)] and channel length modulation parameter λ = 0.2V~(-1) are estimated from the measured data. Linear and saturation models are also shown in Fig. 3. Note that the drain resistance R does not influence the current in the saturation regime, but limits it to large source-drain voltages and small effective source-gate voltages V_(sg) + V_t.
机译:研究了P沟道耗尽模式单壁碳纳米管场效应晶体管(SWCNT-FET)的DC和固有低频噪声特性。为了表征内在噪声性质,沉积的薄原子层(ALD)HFO_2栅极电介质也用于将SWCNT-FET与环境因子分离。 SWCNT-FET器件(具有1个CNT的原型装置在图1中示出),用300nm SiO_2热氧化物在Si衬底上制造。铁催化剂图案由UV光刻限定,具有10μm间距和后续的铁沉积和剥离。然后通过涂有图案铁催化剂的基材上的甲烷的化学气相沉积(CVD)来合成单壁碳纳米管(SWCNT)。通过电子束沉积PD金属的电子束沉积分开3μm的源极和漏极触点。通过使用HFCL_4和H_2O的前体在300℃下在300℃下使用ASM微化学F-120 ALCVD反应器沉积20nM高k HFO_2薄膜。顶栅金属由UV光刻法定义,然后沉积Cr / Au(10/50nm),最小栅极长度为1.5μm。 Cr / Au(20 / 450nm)金属互连最终沉积在源极和排水PD触点的顶部。图2示出了具有1.5μm的SWCNT-FET的传输特性(I_D-V_(SG)),当V_(SG)从-1.5V到1V扫描时,在环境环境中测量的3μm栅极长度和3μm源排水分离。回到-1.5V。实际上在该装置的IV特征中没有观察到滞后。图3示出了相同设备的I_D-V_(SD)特性,最大电流为14μA的电流,并且在V_(SD)= 1.5V的漏极偏压和v_(sg)= -0.75的栅极偏压下的6μs的最大跨导V.由于漏极触点处的肖特基屏障引起的漏极电阻(R)为漏极触点,从IV曲线提取。根据i_d =μ_(eff)c_g(v_(sg)+ v_t)v_(sd)/(l +rμ_(eff)c_g(v_(sg)+ v_t)),模拟线性区域中的漏极电流为c_g = 2πε_0ε/ cosh〜(-1)(1 + h / r)〜28af / nm假定圆柱形管模型是设备结构中每单位长度的栅极电容,l是栅极长度,ε_r= 15是HFO_2,R = 0.5〜2nm的有效介电常数是CNT的半径,H = 20nm是栅极氧化物厚度,μ_(eff)是SWCNT通道中孔的有效场效应迁移率。在当前饱和状态下,其中V_(SD)≥V_(SG)+ V_T + RI_D,SWCNT-FET具有半弹性传输,其漏极电流为I_D = K(V_(SG)+ V_T)〜(3 / 2)(1 +λv_(SD)),有效跨导K = 1.7×10〜(-6)[A / V〜(1.5)]和通道长度调制参数λ= 0.2V〜(-1)测量数据。图3中还示出了线性和饱和型号。注意,漏极电阻R不会影响饱和状态下的电流,而是将其限制为大的源 - 漏电压和小有效源极电压V_(SG)+ V_T 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号