首页> 外文会议>Device Research Conference >Polarization-Engineered N-face III-V Nitride Quantum Well LEDs
【24h】

Polarization-Engineered N-face III-V Nitride Quantum Well LEDs

机译:偏振工程的N面III-V氮化物量子孔LED

获取原文

摘要

III-V nitride semiconductors are direct band gap semiconductors spanning a wide range of band gaps from 0.7 eV (InN, IR), through 3.4 eV (GaN, UV) to 6.2 eV (AlN, deep UV). This makes them uniquely suited for fabricating visible and UV LEDs [1]. UV LEDs have applications in water purification, microscopy and chemical analysis. However, wide band gap nitrides suffer from poor p-type doping owing to large activation energy of Mg acceptor dopant (E_A~200 meV for GaN [2] and 650 meV for AlN [3]). This results in low thermal activation of holes at room temperature and causes low p-type conductivity. III-V nitrides also exhibit large built-in polarization field with spontaneous and strain induced piezoelectric components [4]. The polarization has recently been exploited to demonstrate N-face AlGaN/GaN p-n heterojunctions with improved p-type conductivities and electroluminescence [5]. In this work, we demonstrate that incorporating quantum wells (QWs) into the active regions improves electroluminescence (EL). Simultaneously, a number of advantages of N-face structures emerge from the point of view of polarization-engineering. Optical device structures grown along the N-face orientation offer a number of unexplored features. Fig 1 shows the simulated energy band diagrams for GaN QWs incorporated between AlGaN barriers on Ga-face and N-face GaN substrate at a forward bias of 3V. The polarization field in the barriers for Gaface structure points in the opposite direction to that in the N-face structure. The polarization field opposes electron/hole injection into the quantum wells from the n- and p-regions for the Ga-face structures but assists this process in the N-face structures. Traditional electron blocking layers are sharp AlGaN/GaN heterojunction, as shown in Fig 2(a). The unavoidable valence band offset also blocks hole injection. To use polarization induced p-type doping on Ga-face LED structures requires grading down to p-type InGaN which is detrimental due to the increase in absorption of emitted light, and the loss of electron blocking layer. N-face structures solve these problems simultaneously as shown in the energy band diagrams in Fig 2(b). Specifically, the polarization-induced p-doped cap layer acts simultaneously as an electron blocking layer while removing any barriers from the path of holes.
机译:III-V氮化物半导体是直接带隙半导体,跨越0.7eV(IN IR),通过3.4eV(GaN,UV)至6.2eV(ALN,Deep UV)的宽带间隙。这使得它们非常适合制造可见和UV LED [1]。 UV LED具有水净化,显微镜和化学分析的应用。然而,由于Mg受体掺杂剂的大激活能量(GaN [2]和650mev,氮气[3]的650mev,宽带氮化氮化物氮化氮化氮化氮含量较差的p型掺杂。这导致室温下孔的低热激活,并导致低p型导电性。 III-V氮化物还具有具有自发性和应变诱导的压电部件的大型内置偏振场[4]。最近促进了极化以证明具有改进的p型导电性和电致发光的N面AlGaN / GaN P-N异质结[5]。在这项工作中,我们证明将量子阱(QWS)纳入有源区改善了电致发光(EL)。同时,从极化工程的角度出现了N面结构的许多优点。沿着n面向成向生长的光学装置结构提供了许多未探究的特征。图1示出了GaN QWS的模拟能带图,其在Ga面上的AlGaN屏障和N面GaN衬底之间以3V的正向偏置的栅极屏障。用于基条结构的屏障中的偏振场与N面结构相反的方向上的相反方向。偏振场将电子/空穴注入到量子阱中,从用于Ga面结构的N-和P区注入量子阱,但是在N面结构中有助于该过程。传统的电子阻挡层是尖锐的AlGaN / GaN异质结,如图2(a)所示。不可避免的价带偏移也阻塞孔注入。在Ga面向LED结构上使用极化诱导的p型掺杂,需要降低到p型Ingan,这是由于发射光吸收的增加而有害,以及电子阻挡层的损失。 N面结构同时解决这些问题,如图2(b)的能量带图所示。具体地,偏振诱导的P掺杂帽层作为电子阻挡层同时作用,同时从孔的路径中移除任何屏障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号