首页> 外文会议>Design, Automation and Test in Europe Conference and Exhibition >Efficiency-driven Hardware Optimization for Adversarially Robust Neural Networks
【24h】

Efficiency-driven Hardware Optimization for Adversarially Robust Neural Networks

机译:对抗性强大神经网络的效率驱动硬件优化

获取原文
获取外文期刊封面目录资料

摘要

With a growing need to enable intelligence in embedded devices in the Internet of Things (IoT) era, secure hardware implementation of Deep Neural Networks (DNNs) has become imperative. We will focus on how to address adversarial robustness for DNNs through efficiency-driven hardware optimizations. Since memory (specifically, dot-product operations) is a key energy-spending component for DNNs, hardware approaches in the past have focused on optimizing the memory. One such approach is approximate digital CMOS memories with hybrid 6T-8T SRAM cells that enable supply voltage (Vdd) scaling yielding low-power operation, without significantly affecting the performance due to read/write failures incurred in the 6T cells. In this paper, we show how the bit-errors in the 6T cells of hybrid 6T-8T memories minimize the adversarial perturbations in a DNN. Essentially, we find that for different configurations of 8T-6T ratios and scaled Vdd operation, noise incurred in the hybrid memory architectures is bound within specific limits. This hardware noise can potentially interfere in the creation of adversarial attacks in DNNs yielding robustness. Another memory optimization approach involves using analog memristive crossbars that perform Matrix- Vector-Multiplications (MVMs) efficiently with low energy and area requirements. However, crossbars generally suffer from intrinsic non-idealities that cause errors in performing MVMs, leading to degradation in the accuracy of the DNNs. We will show how the intrinsic hardware variations manifested through crossbar non-idealities yield adversarial robustness to the mapped DNNs without any additional optimization.
机译:随着需求的需求,在物联网(物联网)时代的嵌入式设备中能够实现智能,安全的深度神经网络(DNN)的安全硬件实现已成为势在一体。我们将专注于如何通过效率驱动的硬件优化来解决DNN的对抗性鲁棒性。由于内存(具体而言,DOT-MARES操作)是用于DNN的关键能量支出组件,过去的硬件方法集中在优化存储器上。一种这样的方法是用混合6T-8T SRAM单元近似数字CMOS存储器,其使得电源电压(VDD)缩放产生低功率操作,而不会显着影响由于6T电池中产生的读/写故障引起的性能。在本文中,我们展示了混合动力6T-8T存储器的6T电池中的位误差是如何最小化DNN中的对抗扰动。基本上,我们发现,对于8T-6T比率的不同配置和缩放的VDD操作,混合内存架构中产生的噪声在特定限制内绑定。这种硬件噪声可能会导致在DNNS产生稳健性中的对抗攻击的创造。另一个存储器优化方法涉及使用模拟丢失跨跨,其有效地使用低能量和区域要求进行高效地执行矩阵乘法(MVMS)。然而,十字栏通常遭受导致执行MVMS的错误的内在非理想,导致DNN的准确性降低。我们将展示内在硬件变化如何通过横杆非理想情况产生对映射DNN的对抗鲁棒性而没有任何额外的优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号