【24h】

NISU: A Novel Index Structure on Uncertain Data in Large-Scale Publish/Subscribe Systems

机译:NISU:大型发布/订阅系统中不确定数据的新型索引结构

获取原文

摘要

Publish/Subscribe Systems are widely used in messaging systems due to loose coupling and asynchronous. As the number of objects participating in the message system increases, there has also been a spurt in the number of messages, which brings great challenges to the traditional event matching methods. After studying the status quo of event matching in the case of large-scale Uncertain Data, we proposed a simple solution named NISU(New Index Structure on Uncertain Data) for efficient event matching. In the proposed scheme, we use P-Skyline to filter unrelated events and subscriptions, then divide the attribute space into several attribute subspace in order to filter unrelated subscriptions, and finally make use of constraint satisfaction criterion for event matching. In addition, in the event matching process, we use confidence to relax the event matching criteria, avoiding the problem of inaccurate matching caused by Uncertain Data set. The experimental results show that the NISU is rapid, low consumed and efficient on large-scale Uncertain Data set.
机译:由于松耦合和异步,发布/订阅系统广泛用于邮件系统中。随着参与消息系统的对象数量的增加,消息的数量也激增,这给传统的事件匹配方法带来了巨大的挑战。在研究了大规模不确定数据情况下事件匹配的现状之后,我们提出了一种简单的解决方案,名为NISU(不确定数据新索引结构),用于有效的事件匹配。在提出的方案中,我们使用P-Skyline过滤不相关的事件和订阅,然后将属性空间划分为几个属性子空间以过滤不相关的订阅,最后利用约束满足标准进行事件匹配。此外,在事件匹配过程中,我们使用置信度来放宽事件匹配条件,避免了不确定数据集导致的不准确匹配问题。实验结果表明,在大规模不确定数据集上,NISU是快速,低消耗和高效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号