首页> 外文会议> >NUMERICAL INVESTIGATION OF FLAME STRUCTURE AND SOOT FORMATION IN A LAB-SCALE RICH-QUENCH-LEAN BURNER
【24h】

NUMERICAL INVESTIGATION OF FLAME STRUCTURE AND SOOT FORMATION IN A LAB-SCALE RICH-QUENCH-LEAN BURNER

机译:实验室规模的浓冷稀薄燃烧器火焰结构和烟尘形成的数值研究

获取原文

摘要

The understanding of the processes involved in soot formation and oxidation is a critical factor for a reliable prediction of emissions in aero-engines, particularly as legislation becomes increasingly stringent. This work studies the flame structure and soot formation in a lab-scale burner, which reproduces the main features of a Rich-Quench-Lean (RQL) combustor, using high-fidelity numerical simulations. The investigated burner, developed at the University of Cambridge, is based on a bluff-body swirl-stabilised ethylene flame, with air provided in the primary region through two concentric swirling flows and quenching enabled by means of four dilution jets at variable distance downstream. Measurements for different air split between the two inlet swirling flows and dilution ports, and different height of the dilution jets, indicate noticeable differences in the soot tendency. Numerical simulations have been performed using Large-Eddy Simulation with the Conditional Moment Closure combustion model and a two-equation model for soot, allowing a detailed resolution of the mixing field and to directly take into account the effect of turbulent transport on the flame structure, which has been shown to have an important effect on the soot formation and evolution. The main objective of this work is to study the flow field and mixing characteristics in the burner's primary region, in order to improve the understanding of the mechanisms leading to the soot behaviour observed in the experiment at different operating conditions. Results show the key role of mixing in determining the level of soot in the burner, with the soot production mainly related to the extension of the flame zone characterized by a rich mixture, with pyrolysis products and soot precursors. The presence of additional dilution air seems to improve the oxidation and leads to a leaner mixture in the primary combustion region whereas the air added through the outer swirl stream seems to have less impact on the mixture formation in the primary region. Analysis of the solution in mixture fraction space shows the importance of residence time for the soot formation and highlights the existence of a range of values of mixture fraction, between 0.1 and 0.2, where the soot production terms are maximum. High residence times and local air-to-fuel ratio in the range of high soot production should be avoided to decrease the level of soot mass fraction in the burner.
机译:对烟尘形成和氧化过程的了解是可靠预测航空发动机排放的关键因素,尤其是随着立法变得越来越严格。这项工作研究了实验室规模燃烧器中的火焰结构和烟尘形成,并使用高保真数值模拟再现了富淬火精益(RQL)燃烧器的主要特征。剑桥大学开发的被研究的燃烧器基于钝体涡旋稳定的乙烯火焰,通过两个同心涡旋流在主要区域提供空气,并通过四个下游可变距离的稀释射流实现淬火。在两个入口涡流和稀释口之间的空气分流不同,以及稀释射流高度不同的测量结果表明,烟灰趋势存在明显差异。使用大涡模拟和条件矩封闭燃烧模型以及烟尘的两方程模型进行了数值模拟,可以对混合场进行详细的解析,并可以直接考虑湍流传输对火焰结构的影响,已显示对烟灰的形成和演变具有重要影响。这项工作的主要目的是研究燃烧器主要区域的流场和混合特性,以增进对导致在不同操作条件下在实验中观察到的烟尘行为的机理的理解。结果表明,混合在确定燃烧器中烟灰水平方面起着关键作用,烟灰的产生主要与火焰区域的扩展有关,火焰区域的扩展是混合气,热解产物和烟灰前体的特征。额外稀释空气的存在似乎可以改善氧化作用,并在主要燃烧区域内产生更稀薄的混合物,而通过外旋流添加的空气似乎对主要区域内的混合物形成的影响较小。对混合物馏分空间中溶液的分析显示了形成烟灰的停留时间的重要性,并突出了存在范围介于0.1和0.2之间的混合分数值,其中烟灰生成项最大。应避免在高烟灰产生范围内的高停留时间和局部空燃比,以降低燃烧器中烟灰质量分数的水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号