首页> 外文会议>ASME Turbomachinery Technical Conference and Exposition >NUMERICAL INVESTIGATION OF FLAME STRUCTURE AND SOOT FORMATION IN A LAB-SCALE RICH-QUENCH-LEAN BURNER
【24h】

NUMERICAL INVESTIGATION OF FLAME STRUCTURE AND SOOT FORMATION IN A LAB-SCALE RICH-QUENCH-LEAN BURNER

机译:实验室规模富淬火燃烧器中的火焰结构和烟尘形成的数值研究

获取原文

摘要

The understanding of the processes involved in soot formation and oxidation is a critical factor for a reliable prediction of emissions in aero-engines, particularly as legislation becomes increasingly stringent. This work studies the flame structure and soot formation in a lab-scale burner, which reproduces the main features of a Rich-Quench-Lean (RQL) combustor, using high-fidelity numerical simulations. The investigated burner, developed at the University of Cambridge, is based on a bluff-body swirl-stabilised ethylene flame, with air provided in the primary region through two concentric swirling flows and quenching enabled by means of four dilution jets at variable distance downstream. Measurements for different air split between the two inlet swirling flows and dilution ports, and different height of the dilution jets, indicate noticeable differences in the soot tendency. Numerical simulations have been performed using Large-Eddy Simulation with the Conditional Moment Closure combustion model and a two-equation model for soot, allowing a detailed resolution of the mixing field and to directly take into account the effect of turbulent transport on the flame structure, which has been shown to have an important effect on the soot formation and evolution. The main objective of this work is to study the flow field and mixing characteristics in the burner's primary region, in order to improve the understanding of the mechanisms leading to the soot behaviour observed in the experiment at different operating conditions. Results show the key role of mixing in determining the level of soot in the burner, with the soot production mainly related to the extension of the flame zone characterized by a rich mixture, with pyrolysis products and soot precursors. The presence of additional dilution air seems to improve the oxidation and leads to a leaner mixture in the primary combustion region whereas the air added through the outer swirl stream seems to have less impact on the mixture formation in the primary region. Analysis of the solution in mixture fraction space shows the importance of residence time for the soot formation and highlights the existence of a range of values of mixture fraction, between 0.1 and 0.2, where the soot production terms are maximum. High residence times and local air-to-fuel ratio in the range of high soot production should be avoided to decrease the level of soot mass fraction in the burner.
机译:理解烟灰形成和氧化的过程是可靠地预测航空发动机排放的关键因素,特别是当立法变得越来越严格。这项工作研究了实验室刻度燃烧器中的火焰结构和烟尘形成,其使用高保真数值模拟来再现富淬火(RQL)燃烧器的主要特征。在剑桥大学开发的调查燃烧器基于诈唬体旋涡稳定的乙烯火焰,空气通过两个同心旋流和淬火,通过四个稀释射流在下游的四个稀释射流使能。不同空气在两个入口旋流和稀释端口之间分裂的测量,以及稀释喷射射流的不同高度,表示烟灰倾向的显着差异。使用具有条件时刻闭合燃烧模型的大涡模拟和用于烟灰的两方程模型进行了数值模拟,允许详细分辨混合场,并直接考虑湍流运输对火焰结构的影响,已经显示出对烟灰形成和进化具有重要影响。这项工作的主要目的是研究燃烧器的主要区域中的流场和混合特性,以改善在不同操作条件下在实验中观察到的烟灰行为的机制的理解。结果表明,混合在确定燃烧器中烟灰水平的关键作用,烟灰产生主要与由富含富含混合物特征的火焰区的延伸,具有热解产物和烟灰前体。额外稀释空气的存在似乎改善了氧化,并导致初级燃烧区域中的稀释混合物,而通过外旋流的空气似乎对初级区域中的混合物形成的影响较小。混合级分空间中溶液的分析表明了烟灰地层停留时间的重要性,并突出了混合级分的一系列值,在0.1和0.2之间的存在,其中烟灰生产术语最大。应避免高停留时间和局部空气到燃料比,以降低燃烧器中烟灰质量分数的水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号