首页> 外文会议>SPIE Advanced Lithography Conference >I-line stepper based overlay evaluation method for wafer bonding applications
【24h】

I-line stepper based overlay evaluation method for wafer bonding applications

机译:用于晶片键合应用的基于i线步进的覆盖评估方法

获取原文

摘要

In the last decades the semiconductor technology has been driven by Moore's law leading to high performance CMOS technologies with feature sizes of less than 10 nm . It has been pointed out that not only scaling but also the integration of novel components and technology modules into CMOS/BiCMOS technologies is becoming more attractive to realize smart and miniaturized systems. Driven by new applications in the area of communication, health and automation, new components and technology modules such as BiCMOS embedded RF-MEMS, high-Q passives, Si-based microfluidics and InP-SiGe BiCMOS heterointegration have been demonstrated. In contrast to standard VLSI processes fabricated on front side of the silicon wafer, these new technology modules additionally require to process the backside of the wafer; thus require an accurate alignment between the front and backside of the wafer. In previous work an advanced back to front side alignment technique and implementation into IHP's 0.25/0.13 μm high performance SiGe:C BiCMOS backside process module has been presented. The developed technique enables a high resolution and accurate lithography on the backside of BiCMOS wafer for additional backside processing. In addition to the aforementioned back side process technologies, new applications like Through-Silicon Vias (TSV) for interposers and advanced substrate technologies for 3D heterogeneous integration demand not only single wafer fabrication but also processing of wafer stacks provided by temporary and permanent wafer bonding . In this work, the non-contact infrared alignment system of the Nikon® i-line Stepper NSR-SF150 for both alignment and the overlay determination of bonded wafer stacks with embedded alignment marks are used to achieve an accurate alignment between the different wafer sides. The embedded field image alignment (FIA) marks of the interface and the device wafer top layer are measured in a single measurement job. By taking the offsets between all different FIA's into account, after correcting the wafer rotation induced FIA position errors, hence an overlay for the stacked wafers can be determined. The developed approach has been validated by a standard front side resist in resist experiment. After the successful validation of the developed technique, special wafer stacks with FIA alignment marks in the bonding interface are fabricated and exposed. Following overlay calculation shows an overlay of less than 200 nm, which enables very accurate process condition for highly scaled TSV integration and advanced substrate integration into IHP's 0.25/0.13 μm SiGe:C BiCMOS technology. The developed technique also allows using significantly smaller alignment marks (i.e. standard FIA alignment marks). Furthermore, the presented method is used, in case of wafer bow related overlay tool problems, for the overlay evaluation of the last two metal layers from production wafers prepared in IHP's standard 0.25/0.13 μm SiGe:C BiCMOS technology. In conclusion, the exposure and measurement job can be done with the same tool, minimizing the back to front side/interface top layer misalignment which leads to a significant device performance improvement of backside/TSV integrated components and technologies.
机译:在过去的几十年中,半导体技术受到摩尔定律的推动,导致了特征尺寸小于10 nm的高性能CMOS技术。已经指出,对于实现智能和小型化的系统,不仅进行缩放而且将新颖的组件和技术模块集成到CMOS / BiCMOS技术中也变得越来越有吸引力。在通信,健康和自动化领域的新应用的推动下,已经展示了新的组件和技术模块,例如BiCMOS嵌入式RF-MEMS,高Q无源器件,基于Si的微流体技术和InP-SiGe BiCMOS异质集成。与在硅晶圆正面上制造的标准VLSI工艺相反,这些新技术模块还需要对晶圆背面进行加工;因此,这些新技术模块需要对晶圆背面进行加工。因此需要在晶片的正面和背面之间进行精确对准。在以前的工作中,已经介绍了一种先进的背对正面对准技术,以及在IHP的0.25 / 0.13μm高性能SiGe:C BiCMOS背面工艺模块中的实现。所开发的技术可在BiCMOS晶片的背面实现高分辨率和精确的光刻,以进行额外的背面处理。除了上述背面处理技术外,诸如用于中介层的硅通孔(TSV)和用于3D异质集成的先进基板技术等新应用不仅需要单个晶片制造,还需要通过临时和永久性晶片键合提供的晶片堆叠处理。在这项工作中,尼康i-line步进NSR-SF150的非接触式红外对准系统可用于对准和带有嵌入式对准标记的粘合晶片叠层的重叠测定,以实现不同晶片侧面之间的精确对准。界面和器件晶圆顶层的嵌入式场图像对齐(FIA)标记是在单个测量作业中测量的。通过考虑所有不同的FIA之间的偏移,在校正晶片旋转引起的FIA位置误差之后,因此可以确定堆叠的晶片的覆盖。所开发的方法已通过抗蚀剂实验中的标准正面抗蚀剂进行了验证。在成功验证了所开发技术之后,便制作并暴露了在键合界面上带有FIA对准标记的特殊晶圆叠层。后续的覆盖层计算显示出小于200 nm的覆盖层,这为高度规模的TSV集成和将先进的衬底集成到IHP的0.25 / 0.13μmSiGe:C BiCMOS技术中提供了非常精确的工艺条件。所开发的技术还允许使用明显较小的对准标记(即标准FIA对准标记)。此外,在与晶圆弯曲相关的覆盖工具问题的情况下,使用提出的方法对采用IHP标准0.25 / 0.13μmSiGe:C BiCMOS技术制备的生产晶圆的最后两个金属层进行覆盖评估。总而言之,可以使用同一工具完成曝光和测量工作,从而最大程度地减少了背面/正面/界面顶层的未对准情况,从而显着提高了背面/ TSV集成组件和技术的器件性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号