首页> 外文会议>IEEE International Magnetics Conference >Off-axis electron holography for the quantitative study of magnetic properties of nanostructures: from the single nanomagnet to the complex device.
【24h】

Off-axis electron holography for the quantitative study of magnetic properties of nanostructures: from the single nanomagnet to the complex device.

机译:离轴电子全息技术,用于定量研究纳米结构的磁性:从单个纳米磁体到复杂的器件。

获取原文

摘要

Summary form only given. Electromagnetic properties are one of the keys for understanding and mastering nano systems used in many applications, as in medical treatment, optics, microelectronic or data storage. Various methods exist to map magnetic fields. Some are based on near field microscopy, like magnetic force microscopy, other on X-ray set-ups, like photoemission electron microscopy. Electron holography (EH), a powerful transmission electron microscopy method, is another appropriate tool which combines high sensitivity with a high spatial resolution. EH allow the quantitative measurement of both internal and external fields in individual nano-objects instead of assemblies of nanoobjects. This interferometric method can also be used for performing in situ/in operando experiments. We thus developed and applied EH on very different systems, from the single nanoparticles to the thin layer and the complex magnetic device, for studying their magnetic properties. In this presentation, we will present our investigations on a single Fe nanocube and an FeRh thin layer. - Nanomagnets recently attracted considerable interest due to their possible application as building blocks for hard drive disks and permanent magnets or as nanobiological vectors for drug delivery and hyperthermia. Despite theoretical studies, the size-dependence of spin arrangements in single nanomagnets has not yet been evidenced experimentally due to sensitivity limitations of the investigation tools. The single domain limit, corresponding to the critical nanomagnet size separating vortex/single domain configurations, has never been observed although it will dictate the optimized size for applications. In such small nano-objects, micromagnetic simulations show that the magnetic internal structure changes from single domain (SD) to vortex states as the cube size increases (Fig. 1). Some years ago, we reported symmetrical vortices, i.e. vortex of <;001> axis, in isolated 30 nm single crystal Fe cubes with a 14 nm vortex core size [2]. Next, we showed that vortices can also be stabilized in the presence of dipolar interactions thanks to holes in the cubes inducing a pinning of the vortex core [3]. Here we will present the spin configuration phase diagram in size-controlled single Fe nanocubes combining EH experiments and micromagnetic simulations [4]. High sensitivity imaging explicitly reveals how three different spin arrangements can be stabilized within a 3 nm window, evidencing the key importance of nanometric size control of magnetic nanoparticles. Moreover, it gives a deeper understanding of the single domain limit, which is more complex than expected with the appearance of a previously unreported <;111> vortex state. Such a measurement opens the door to fine magnetic control of nano-objects. - In situ heating/cooling EH has been used to quantitatively map the magnetization of a cross-sectional FeRh thin film through its magnetic transition [5]. This alloy presents a remarkable and unusual magnetic transition from a low temperature antiferromagnetic state (AFM) to a high temperature ferromagnetic state (FM) close to 370K accompanied by a 1% volume expansion.
机译:仅提供摘要表格。电磁属性是理解和掌握用于医疗,光学,微电子或数据存储等许多应用中的纳米系统的关键之一。存在多种映射磁场的方法。有些是基于近场显微镜(例如磁力显微镜),其他是基于X射线设置(例如光发射电子显微镜)。电子全息术(EH)是一种强大的透射电子显微镜方法,是将高灵敏度与高空间分辨率相结合的另一种合适的工具。 EH允许定量测量单个纳米物体中的内部和外部场,而不是纳米物体的集合。这种干涉测量方法也可以用于进行原位/操作实验。因此,我们开发了EH并将其应用到非常不同的系统中,从单个纳米粒子到薄层和复杂的磁器件,以研究其磁性能。在本演讲中,我们将介绍对单个Fe纳米立方体和FeRh薄层的研究。 -纳米磁体由于其可能用作硬盘驱动器和永磁体的构建基块或作为药物递送和热疗的纳米生物学载体而引起了人们的极大兴趣。尽管有理论研究,但由于研究工具的灵敏度限制,尚未在实验上证明单个纳米磁体中自旋排列的尺寸依赖性。从未观察到与将涡旋/单畴配置分开的临界纳米磁体尺寸相对应的单畴极限,尽管它将决定应用的最佳尺寸。在如此小的纳米物体中,微磁模拟表明,随着立方尺寸的增大,磁内部结构从单畴(SD)变为涡流状态(图1)。几年前,我们报道了对称的涡旋,即<001>轴的涡旋,位于分离的30 nm单晶铁立方体中,其磁芯尺寸为14 nm [2]。接下来,我们证明了由于偶极相互作用的存在,由于立方体中的孔引起了涡旋核的钉扎,涡旋也可以稳定下来[3]。在这里,我们将结合EH实验和微磁模拟[4],给出尺寸受控的单个Fe纳米立方体中的自旋构型相图。高灵敏度成像明确揭示了如何在3 nm窗口内稳定三种不同的自旋排列,从而证明了磁性纳米粒子的纳米尺寸控制的关键重要性。此外,它对单域限制有更深入的了解,与以前未报告的<111>涡旋状态相比,它比预期的要复杂得多。这样的测量为精细控制纳米物体打开了大门。 -原位加热/冷却EH已用于通过其磁性跃迁定量地映射断面FeRh薄膜的磁化强度[5]。这种合金具有从低温反铁磁态(AFM)到接近370K的高温铁磁态(FM)的显着且不寻常的磁转变,伴随着1%的体积膨胀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号