首页> 外文会议>International Conference on Systems, Man, and Cybernetics >Machine Learning for Robot-Assisted Industrial Automation of Aerospace Applications
【24h】

Machine Learning for Robot-Assisted Industrial Automation of Aerospace Applications

机译:机器学习用于航空航天应用中的机器人辅助工业自动化

获取原文

摘要

In this paper, a multiple circular contours extraction method is applied to estimate the geometric primitives of multiple circles in the three-dimensional space for robot-assisted industrial automation for manufacturing processes. The primary objective is to establish an accurate reference frame which is a major requirement in the robot-assisted riveting process for floating aircraft fasteners used in aerospace structures assembly. The reference frame that constitutes the positions, the diameters, and orientations of the fastening holes is used to minimize the positioning and alignment errors between the floating fasteners and the workpiece. The method can be divided into the following steps. Firstly, a Maximum Likelihood Estimation Sample Consensus (MLESAC) method is used to fit the plane on the point cloud and to classify the data into inliers (coplanar points) and outliers (noisy points due to strong reflections of laser on shiny metallic surfaces). Secondly, after downsampling the inliers, the data are rotated using the Rodrigues formula such that the normal direction of the estimated plane and the z-axis direction are parallel. Thirdly, the Delaunay triangulation is constructed on the rotated inliers and a confidence interval is estimated to classify the points that are located at the circular boundaries of the holes from the inliers. Fourthly, a hierarchical clustering approach is applied to partition the classified point cloud into three data sets belonging to one major hole and two minor holes. Finally, the convex hull is constructed on the clustered data sets and three circular profiles are fitted. The method is applied on a noisy experimental data and the repeatability of the outputs is discussed thoroughly. In our evaluation, the point cloud is acquired by a laser stripe sensor placed on a liner rail, which is attached on an end effector of a 6 Degrees-of-Freedom (DoF) KUKA robotic arm. The method is used to successfully automate the riveting of the fastener components on an aerospace structure.
机译:本文采用多圆轮廓提取方法来估计三维空间中多个圆的几何图元,以实现机器人辅助的工业自动化生产过程。主要目的是建立一个准确的参考系,这是航空航天结构组装中使用的浮动飞机紧固件的机器人辅助铆接工艺的主要要求。构成紧固孔的位置,直径和方向的参考框架用于最小化浮动紧固件和工件之间的定位和对准误差。该方法可以分为以下步骤。首先,使用最大似然估计样本共识(MLESAC)方法拟合点云上的平面,并将数据分类为离群点(共面点)和离群点(由于激光在发亮的金属表面上强烈反射而产生的噪声点)。其次,在对惯性线进行下采样之后,使用Rodrigues公式旋转数据,以使估计平面的法线方向与z轴方向平行。第三,在旋转的内线上构建Delaunay三角剖分,并估计置信区间以对位于来自内线的孔的圆形边界处的点进行分类。第四,采用层次聚类的方法将分类点云划分为三个数据集,分别属于一个大孔和两个小孔。最后,将凸包构建在聚类数据集上,并拟合三个圆形轮廓。该方法应用于嘈杂的实验数据,并对输出的可重复性进行了详尽的讨论。在我们的评估中,点云是由置于条纹导轨上的激光条纹传感器采集的,该条纹导轨安装在6自由度(DoF)KUKA机械臂的末端执行器上。该方法用于成功地自动化紧固件在航空航天结构上的铆接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号