首页> 外文会议>IEEE International Conference on Systems, Man, and Cybernetics >Machine Learning for Robot-Assisted Industrial Automation of Aerospace Applications
【24h】

Machine Learning for Robot-Assisted Industrial Automation of Aerospace Applications

机译:机器人辅助工业自动化航空航天应用机器学习

获取原文
获取外文期刊封面目录资料

摘要

In this paper, a multiple circular contours extraction method is applied to estimate the geometric primitives of multiple circles in the three-dimensional space for robot-assisted industrial automation for manufacturing processes. The primary objective is to establish an accurate reference frame which is a major requirement in the robot-assisted riveting process for floating aircraft fasteners used in aerospace structures assembly. The reference frame that constitutes the positions, the diameters, and orientations of the fastening holes is used to minimize the positioning and alignment errors between the floating fasteners and the workpiece. The method can be divided into the following steps. Firstly, a Maximum Likelihood Estimation Sample Consensus (MLESAC) method is used to fit the plane on the point cloud and to classify the data into inliers (coplanar points) and outliers (noisy points due to strong reflections of laser on shiny metallic surfaces). Secondly, after downsampling the inliers, the data are rotated using the Rodrigues formula such that the normal direction of the estimated plane and the z-axis direction are parallel. Thirdly, the Delaunay triangulation is constructed on the rotated inliers and a confidence interval is estimated to classify the points that are located at the circular boundaries of the holes from the inliers. Fourthly, a hierarchical clustering approach is applied to partition the classified point cloud into three data sets belonging to one major hole and two minor holes. Finally, the convex hull is constructed on the clustered data sets and three circular profiles are fitted. The method is applied on a noisy experimental data and the repeatability of the outputs is discussed thoroughly. In our evaluation, the point cloud is acquired by a laser stripe sensor placed on a liner rail, which is attached on an end effector of a 6 Degrees-of-Freedom (DoF) KUKA robotic arm. The method is used to successfully automate the riveting of the fastener components on an aerospace structure.
机译:在本文中,施加多个圆形轮廓提取方法来估计多个圆的用于机器人辅助的工业自动化的三维空间中的几何图元的制造工艺。的主要目的是建立精确的参考帧,其在用于漂浮在航空结构中使用装配飞机紧固件机器人辅助铆接过程的主要要求。构成紧固孔的位置,直径,和取向的参考帧被用于最小化浮紧固件和工件之间的定位和对准误差。该方法可以划分为以下步骤。首先,最大似然估计抽样一致性(MLESAC)方法被用于拟合上的点云的平面和所述数据到内围层(共面的点)和异常值进行分类(嘈杂点由于上闪亮的金属表面的激光的强反射)。其次,下采样内围层之后,数据被使用Rodrigues的公式,使得所估计的平面和z轴方向的法线方向是平行的旋转。第三,Delaunay三角构造上旋转内围层和置信区间估计为在位于从内围层中的孔的圆形边界点的分类。第四,分级聚类方法应用于分类点云划分成属于一个主要孔和两个次要孔三个数据集。最后,凸包被构建在群集数据集和三个圆形轮廓拟合。该方法被应用在有噪声的实验数据和输出的重复性详细讨论。在我们的评价中,点云是由放置在衬垫轨的激光条纹传感器,其被安装在一个6度的自由度(DOF)库卡机器人臂的端部执行器获得的。该方法成功地用于自动化扣件组件的铆接上的航空航天结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号