首页> 外文会议>IEEE International Integrated Reliability Workshop >Self-Heating Effect in Silicon-Germanium Heterostructure Bipolar Transistors in Stress and Operating Conditions
【24h】

Self-Heating Effect in Silicon-Germanium Heterostructure Bipolar Transistors in Stress and Operating Conditions

机译:应力和工作条件下硅锗异质结构双极晶体管的自热效应

获取原文

摘要

In recent times many systems in a wide range of application fields (e.g., health, material science, security, and communications) exploit the mm- and sub-mm-wave spectrum, which dramatically sped up the growth of the BiCMOS technology integrating silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) and passives. Today, the reliability of such devices is of primary concern, and particular attention is given to the device self-heating (SH), the importance of which is supposed to increase with the device scaling. In this work we develop a TCAD model for SiGe HBT devices that is used to investigate the SH effects in SiGe HBTs both in operating and stress conditions. We underline the different role played by impact ionization and carriers' and lattice heating on the device degradation. Results show the important role played by the backend-of-line (BEOL) and by the substrate thermal resistance in dissipating the heat generated by impact ionization and hotcarriers. Simulations of the SH effects in stress conditions excluded annealing as the possible reason for the degradation dynamics reported in the literature, while simulations of stressed devices in measurement conditions revealed the presence of a hole hot spot that suggests a possible physical mechanism involved in the degradation slowdown at long stress times reported in the literature.
机译:近期,许多应用领域(例如健康,材料科学,安全和通信)中的许多系统都利用了毫米波和亚毫米波频谱,这极大地加快了集成了硅芯片的BiCMOS技术的发展。锗(SiGe)异质结双极晶体管(HBT)和无源器件。如今,这类设备的可靠性已成为首要关注的问题,并且特别关注了设备自热(SH),其重要性随着设备的扩展而增加。在这项工作中,我们为SiGe HBT器件开发了一个TCAD模型,该模型用于研究在工作和应力条件下SiGe HBT中的SH效应。我们强调了碰撞电离,载流子和晶格加热对器件退化的不同作用。结果表明,线后(BEOL)和基板热阻在消散碰撞电离和热载流子产生的热量方面起着重要作用。在应力条件下对SH效应的模拟排除了退火,因为退火是文献报道的降解动力学的可能原因,而在测量条件下对应力器件进行的模拟则揭示了空穴热点的存在,这表明了降解减慢的一种可能的物理机制在文献中报道的长时间压力下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号