首页> 外文会议>International Conference on Audio, Language and Image Processing >Road Extraction from Multi-Source High-Resolution Remote Sensing Image Using Convolutional Neural Network
【24h】

Road Extraction from Multi-Source High-Resolution Remote Sensing Image Using Convolutional Neural Network

机译:基于卷积神经网络的多源高分辨率遥感影像道路提取

获取原文

摘要

The traditional network information update depends on the field measurement or artificial interpretation of surveying and mapping in remote sensing image. The shortcomings are obvious: high cost, long cycle, and consume a large amount of manpower. In order to solve this problem, we use the convolution neural network in the deep learning to complete road information extraction from high resolution image. The road training database combines two kinds of high resolution remote sensing data which are the GaoFen-2 and World View. Two different training models are used to compare the results. Furthermore, the results of the two models are combined to obtain more accurate and improved road extraction results.
机译:传统的网络信息更新取决于遥感图像中的测量和映射的现场测量或人工解释。缺点是显而易见的:高成本,长周期,消耗大量人力。为了解决这个问题,我们在深度学习中使用卷积神经网络来完成高分辨率图像的道路信息提取。道路训练数据库结合了两种高分辨率遥感数据,即高芬-2和世界观。两种不同的训练模型用于比较结果。此外,两种模型的结果组合以获得更准确和改善的道路提取结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号