首页> 外文会议>International Joint Conference on Neural Networks >Neuromorphic hardware in the loop: Training a deep spiking network on the BrainScaleS wafer-scale system
【24h】

Neuromorphic hardware in the loop: Training a deep spiking network on the BrainScaleS wafer-scale system

机译:循环中的神经形态硬件:在BrainScaleS晶圆级系统上训练深度加标网络

获取原文

摘要

Emulating spiking neural networks on analog neuromorphic hardware offers several advantages over simulating them on conventional computers, particularly in terms of speed and energy consumption. However, this usually comes at the cost of reduced control over the dynamics of the emulated networks. In this paper, we demonstrate how iterative training of a hardware-emulated network can compensate for anomalies induced by the analog substrate. We first convert a deep neural network trained in software to a spiking network on the BrainScaleS wafer-scale neuromorphic system, thereby enabling an acceleration factor of 10000 compared to the biological time domain. This mapping is followed by the in-the-loop training, where in each training step, the network activity is first recorded in hardware and then used to compute the parameter updates in software via backpropagation. An essential finding is that the parameter updates do not have to be precise, but only need to approximately follow the correct gradient, which simplifies the computation of updates. Using this approach, after only several tens of iterations, the spiking network shows an accuracy close to the ideal software-emulated prototype. The presented techniques show that deep spiking networks emulated on analog neuromorphic devices can attain good computational performance despite the inherent variations of the analog substrate.
机译:与在传统计算机上模拟尖峰神经网络相比,在模拟神经形态硬件上模拟尖峰神经网络具有多个优势,特别是在速度和能耗方面。但是,这通常是以减少对仿真网络动态的控制为代价的。在本文中,我们演示了硬件仿真网络的迭代训练如何补偿模拟衬底引起的异常。我们首先将经过软件训练的深层神经网络转换为BrainScaleS晶圆级神经形态系统上的尖峰网络,从而与生物时域相比,实现了10000的加速因子。该映射之后是循环内训练,其中在每个训练步骤中,网络活动首先记录在硬件中,然后用于通过反向传播在软件中计算参数更新。一个重要的发现是参数更新不必精确,而仅需要大致遵循正确的梯度,从而简化了更新的计算。使用这种方法,仅经过几十次迭代,加标网络就显示出接近理想软件仿真原型的精度。提出的技术表明,在模拟神经形态设备上模拟的深尖刺网络可以实现良好的计算性能,尽管模拟基板的内在变化也是如此。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号