首页> 外文会议>IEEE International Ultrasonics Symposium >Shear shock waves observed in the ex-vivo brain
【24h】

Shear shock waves observed in the ex-vivo brain

机译:在离体大脑中观察到剪切冲击波

获取原文

摘要

For the past 50 years head injury biomechanics has been guided by measurements of accelerometers attached to the skull. These measurements provide a partial and indirect estimate of brain motion because the internal deformation of the brain is far more complex than the rigid motion of the skull. In this context, brain tissue behaves nonlinearly under conditions that are generally met by injurious impacts. Attempts to measure the in situ nonlinear brain mechanics with imaging methods (MRI, CT) have lacked the penetration, frame rate, or motion detection accuracy to capture the nonlinear transient events during traumatic injury. Here we present a high framerate (6200 images/second) ultrasound imaging method that can accurately measure the internal brain motion during the rapid transient events associated with a mild impact in an ex-vivo porcine brain. Our method relies on two main advancements 1) A flash focus ultrasound sequence which reduces the side lobes by 19dB and increases the SNR deep in the brain compared with a conventional plane wave compounding sequence. 2) An adaptive tracking algorithm which uses a quality weighted median filter to iteratively optimize correlation estimates. By imaging brain motion directly we were able to observe the formation of shear shock waves within the brain. The measured shock waves have a specific odd harmonic signature predicted by theory describing a cubically nonlinear elastic soft solid. Measurements of the frequency dependent attenuation and dispersion were used to fit this nonlinear theoretical model to our data. This yielded the first estimates of the cubic nonlinear parameter for brain tissue. This previously unobserved shear shock wave phenomenology dramatically amplifies the acceleration at the shock front, deep in the brain, compared with the acceleration imposed at the brain surface (up to a factor 8.5). A 30 g acceleration at the brain surface therefore develops into a 255 g shock wave deep inside the brain. The highly localized increase in acceleration suggests that the shear shock wave is a primary mechanism for traumatic injuries.
机译:在过去的50年中,头部受伤的生物力学一直以测量附着在颅骨上的加速度计为指导。这些测量提供了部分和间接的大脑运动估计,因为大脑的内部变形远比颅骨的刚性运动复杂。在这种情况下,脑组织在通常受到伤害性影响的条件下会表现出非线性行为。尝试使用成像方法(MRI,CT)测量原位非线性脑力学的方法缺乏穿透力,帧速率或运动检测精度,无法捕获创伤性损伤期间的非线性瞬态事件。在这里,我们提出了一种高帧速率(6200图像/秒)的超声成像方法,该方法可以准确地测量与离体猪脑中轻度撞击相关的快速瞬态事件期间的大脑内部运动。我们的方法依靠两个主要进展:1)闪光聚焦超声序列与传统的平面波合成序列相比,可将旁瓣减少19dB,并在脑部深处提高SNR。 2)自适应跟踪算法,该算法使用质量加权中值滤波器来迭代优化相关估计。通过直接对大脑运动进行成像,我们能够观察到大脑内剪切激波的形成。测得的冲击波具有特定的奇次谐波特征,该特征由描述立方非线性弹性软固体的理论预测。频率相关的衰减和色散的测量被用于将该非线性理论模型拟合到我们的数据中。这产生了脑组织立方非线性参数的第一个估计值。与以前施加在大脑表面的加速度相比,这种以前未曾观察到的剪切冲击波现象学极大地放大了在大脑深处的冲击前沿的加速度(最高达8.5倍)。因此,大脑表面的30 g加速度会在大脑内部深处产生255 g的冲击波。加速度的高度局部增加表明,剪切冲击波是造成创伤的主要机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号