首页> 外文会议>International Conference on Computational Science and Computational Intelligence >Ranking Anomalous High Performance Computing Sensor Data Using Unsupervised Clustering
【24h】

Ranking Anomalous High Performance Computing Sensor Data Using Unsupervised Clustering

机译:使用无监督聚类对异常高性能计算传感器数据进行排名

获取原文

摘要

Environmental sensors monitor supercomputing facility health, generating massive data in the largest facilities. Current state-of-the-art is for human operators to evaluate environmental data by hand. This approach will not be viable on Exascale machines, nor is it ideal on current systems. We evaluate effectiveness of the DBSCAN algorithm for identifying anomalies in supercomputing sensor data. We filter large portions of data showing normal behavior from anomalies, and then rank anomalous points by distance to the nearest normal cluster. We compare DBSCAN to k-means and Gaussian kernel density estimation, finding that DBSCAN effectively clusters sensor data from a Cray supercomputing facility. DBSCAN also successfully clusters synthetic injected data, avoiding the false positives generated by k-means and Gaussian kernel density estimation.
机译:环境传感器监控超级计算设施健康,在最大的设施中产生大量数据。目前最先进的是人类运营商用手评估环境数据。这种方法不会在ExaScale机器上可行,也不是当前系统的理想选择。我们评估DBSCAN算法在超级计算传感器数据中识别异常的有效性。我们过滤显示来自异常的正常行为的大量数据,然后通过与最近的正常群集的距离排列异常点。我们将DBSCAN与K-means和高斯内核密度估算进行比较,发现DBSCAN有效地从CRAY超级计算设施中群集传感器数据。 DBSCAN还成功群集合成注射数据,避免了K-Meanse和高斯内核密度估计产生的误报。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号