首页> 外文会议>IEEE Aerospace Conference >Control and Trajectory Optimization for Soft Aerial Manipulation
【24h】

Control and Trajectory Optimization for Soft Aerial Manipulation

机译:软空中操作的控制与轨迹优化

获取原文
获取外文期刊封面目录资料

摘要

Manipulation and grasping with unmanned aerial vehicles (UAVs) currently require accurate positioning and are often executed at reduced speed to ensure successful grasps. This is due to the fact that typical UAV s can only accommodate rigid manipulators with few degrees of freedom, which limits their capability to compensate for disturbances caused by the vehicle positioning errors. Moreover, UAV s have to minimize external contact forces in order to maintain stability. Biological systems, on the other hand, exploit softness to overcome similar limitations, and leverage compliance to enable aggressive grasping. This paper investigates control and trajectory optimization for a soft aerial manipulator, consisting of a quadrotor and a tendon-actuated soft gripper, in which the advantages of softness can be fully exploited. To the best of our knowledge, this is the first work at the intersection between soft manipulation and UAV control. We present a decoupled approach for the quadrotor and the soft gripper, combining (i) a geometric controller and a minimum-snap trajectory optimization for the quadrotor (rigid) base, with (ii) a quasi-static finite element model and control-space interpolation for the soft gripper. We prove that the geometric controller asymptotically stabilizes the quadrotor velocity and attitude despite the addition of the soft load. Finally, we evaluate the proposed system in a realistic soft dynamics simulator, and show that: (i) the geometric controller is fairly insensitive to the soft payload, (ii) the platform can reliably grasp unknown objects despite inaccurate positioning and initial conditions, and (iii) the decoupled controller is amenable for real-time execution. Video Attachment: https://youtu.be/NNpQxP0SPFk
机译:用无人驾驶飞行器(无人机)的操纵和抓住目前需要准确定位,并且通常以减小的速度执行,以确保成功的掌握。这是由于典型的UAV S只能容纳具有少量自由度的刚性机械手,这限制了它们可以补偿由车辆定位误差引起的扰动的能力。此外,UAV S必须最小化外部接触力以保持稳定性。另一方面,生物系统利用柔软度来克服类似的限制,并利用遵守来实现积极的抓握。本文调查了软空气机械手的控制和轨迹优化,由四射线和肌腱驱动的软夹持器组成,其中可以充分利用柔软度的优点。据我们所知,这是软操作和UAV控制之间交叉路口的第一个工作。我们介绍了四轮电机和软夹具的解耦方法,组合(i)几何控制器和四峰值(刚性)基础的最小拍摄轨迹优化,(ii)准静态有限元模型和控制空间软夹具的插值。我们证明了尽管添加了软载荷,但几何控制器渐近稳定了四轮流速度和姿态。最后,我们在逼真的软动力学模拟器中评估所提出的系统,并表明:(i)几何控制器对软有效载荷相对不敏感,(ii)尽管定位和初始条件不准确和初始条件,平台可以可靠地掌握未知对象,以及(iii)解耦控制器可用于实时执行。视频附件:https://youtu.be/nnpqxp0spfk

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号