首页> 外文会议>SiGe, Ge, and related compounds: materials, processing, and devices symposium;Meeting of The Electrochemical Society >Silicon Germanium FinFET Device Physics, Process Integration and Modeling Considerations (Invited)
【24h】

Silicon Germanium FinFET Device Physics, Process Integration and Modeling Considerations (Invited)

机译:硅锗FinFET器件物理,工艺集成和建模注意事项(邀请)

获取原文

摘要

We introduce SiGe FinFET device physics, process integration, and modeling considerations. Germanium is know to have a higher hole mobility than silicon. Enhancement of hole velocity due to lattice mismatch strain in SiGe epitaxy layers is significant. In addition, uniaxial stress is beneficial for device performance. Transformation of biaxial to uniaxial stress naturally occurs when SiGe film is etched into stripes. Furthermore, control of MOSFET threshold voltage by adjusting the SiGe-channel germanium content is possible. On the other hand, SiGe processing challenges include the elimination of interface trap states at the gate dielectric interface, fast diffusion of n-type dopants, and defects in stress relaxed buffer and critical thickness limitations. Band-to-band tunneling sets a lower bound to device static leakage current.
机译:我们介绍了SiGe FinFET器件的物理原理,工艺集成和建模注意事项。众所周知,锗的空穴迁移率比硅高。 SiGe外延层中由于晶格失配应变而引起的空穴速度的提高是显着的。此外,单轴应力有利于器件性能。当将SiGe膜蚀刻成条纹时,自然会发生双轴应力向单轴应力的转变。此外,可以通过调整SiGe沟道锗含量来控制MOSFET阈值电压。另一方面,SiGe处理的挑战包括消除栅极电介质界面处的界面陷阱状态,n型掺杂剂的快速扩散以及应力松弛缓冲层中的缺陷和关键的厚度限制。带间隧穿为器件静态漏电流设置了下限。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号