【24h】

Fast volumetric imaging of neural activity in deep brain

机译:深脑中神经活动的快速体积成像

获取原文

摘要

Calcium imaging is a widely-used technique for recording neuronal activity. For deep-brain imaging, light scattering degrades image acquisition. To avoid imaging through thick tissue, one common approach is to implant a small lens system (a microendoscope) into the brain. But there is no technique to achieve fast volumetric imaging through such lenses, and this lack forces a choice between abandoning optical sectioning or sampling with risk of confusion from overlaps (when labeling is dense) or being limited to modest neural population size (when labeling is sparse). To address these limitations, we designed a novel imaging technique, RE-imaging Axial Light-sheet Microscopy (REALM), suitable for fast three-dimensional imaging through a microendoscope. REALM images via a tilted light-sheet, illuminating and collecting fluorescence emission with single objective. The first-stage "Maxwell theorem" microscope employs a matching pair of objectives to reimage sample volume onto a sawtooth mirror, which consists of a series of sub-micrometer scale angled surfaces. The sawtooth mirror redirects the light horizontally into the second-stage microscope, forming a crisp image of the illuminated near-axial plane. The whole second microscope system collects over 40% of light reflected by the sawtooth mirror, compared to previous studies 28% of light collection efficiency at numerical apertures that are unavailable for microendoscopy. This microscope will combine the speed and resolution advantages of light-sheet microscopy with the capabilities of microendoscopes for deep-brain imaging, providing the ability to perform fast three-dimensional imaging in deep tissue.
机译:钙成像是一种用于记录神经元活动的广泛使用的技术。对于深脑成像,光散射降低图像采集。为了避免通过厚组织成像,一种常见的方法是将小透镜系统(微通镜)植入大脑。但是没有技术可以通过这种镜片实现快速的体积成像,并且这种缺乏迫使在放弃光学切片或采样之间采取的选择,其具有从重叠(标记为致密时的困惑或限制为适度的神经群体大小(标记时)的风险疏)。为了解决这些限制,我们设计了一种新型成像技术,重新成像轴向光纸显微镜(REARM),适用于通过微内窥镜快速三维成像。通过倾斜的光纸,照亮和收集单个物镜的荧光发射的领域图像。第一阶段“麦克斯韦定理”显微镜采用匹配的一对物体来将样品体积重新分析到锯齿镜上,这由一系列子微米刻度成角度表面组成。锯齿镜将光线水平重定向到第二级显微镜中,形成照明近轴向平面的清晰图像。整个第二显微镜系统收集了锯齿镜反射的40%的光,与之前的研究相比,在数值孔径下的数值孔径中的28%的光收集效率相比。该显微镜将使光纸显微镜的速度和分辨率与小脑成像的微安镜片的能力结合起来,提供在深组织中进行快速三维成像的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号