首页> 外文会议>International conference on mechatronics and automatic control systems >μ-Method for Robust Stability of Active Aeroelastic Wing with Multiple Control Surfaces
【24h】

μ-Method for Robust Stability of Active Aeroelastic Wing with Multiple Control Surfaces

机译:多控制面主动气动弹性翼的鲁棒稳定性的μ方法

获取原文

摘要

μ-method for robust stability of an active aeroelastic wing section with leading and tailing edge control surface is developed. Robust system is constructed to account for the uncertainty parameters associated with the variable structural damping and the nonlinear structural stiffness. The nominal and robust stability margins, critical flutter airspeeds and frequencies are computed to analyze the aeroelastic and aeroservoelastic robust stability in the μ-framework. The analysis process shows μ method for robust stability analysis of aeroservoelastic system with uncertainties is effective. The simulation results indicated that uncertain perturbation reduces stability margin of system. The aeroservoelastic system increases flutter speed and critical dynamic pressure to the aeroelastic (openloop) system, specifically increases in flutter speed is 12 % when leading edge flap activated and 32 % when both leading and trailing edge flap activated. The system tends to stabilize more quickly and trailing edge flap deflects smaller by using both the leading and trailing edge control surfaces simultaneously.
机译:开发了一种具有主动和弹性尾翼控制面的气动弹性机翼截面的鲁棒稳定性的方法。构造鲁棒系统以考虑与可变结构阻尼和非线性结构刚度相关的不确定性参数。计算标称和鲁棒稳定性裕度,临界颤振空速和频率,以分析μ框架中的气弹和气弹弹性鲁棒稳定性。分析过程表明,用μ法对不确定性的航空弹性系统进行鲁棒稳定性分析是有效的。仿真结果表明,不确定的扰动降低了系统的稳定性裕度。气动弹性系统增加了气动弹性(开环)系统的颤振速度和临界动压力,特别是当前缘襟翼被激活时颤振速度增加了12%,而前缘襟翼和后缘襟翼都被激活了32%。通过同时使用前缘和后缘控制表面,系统趋于更快地稳定并且后缘襟翼偏转较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号