首页> 外文会议>IEEE Haptics Symposium >An investigation of haptic perception of viscoelastic materials in the frequency domain
【24h】

An investigation of haptic perception of viscoelastic materials in the frequency domain

机译:频域中粘弹性材料触觉触觉感知的研究

获取原文

摘要

Although we hardly interact with objects that are purely elastic or viscous, haptic perception studies of deformable objects are mostly limited to stiffness and damping. Psychophysical investigation of materials that show both elastic and viscous behavior (viscoelastic materials) is challenging due to their complex, time and rate dependent mechanical behavior. In this study, we provide a new insight into the investigation of human perception of viscoelasticity in the frequency domain. In the frequency domain, the force response of a viscoelastic material can be represented by its magnitude and phase angle. Using this framework, we estimated the point of subjective equality (PSE) of a Maxwell arm (a damper and a spring in series) to a damper and a spring using complex stiffness magnitude and phase angle in two sets of experiments. A damper and a spring are chosen for the comparisons since they actually represent the limit cases for a viscoelastic material. We first performed 2I-2AFC adaptive staircase experiments to investigate how the perceived magnitude of complex stiffness changes in a Maxwell arm for small and large values of time constant. Then, we performed 3I-2AFC adaptive staircase experiments to investigate how the PSE changes as a function of the phase angle in a Maxwell arm. The results of our study show that the magnitude of complex stiffness was underestimated due to the smaller phase lag (with respect to a damper's) between the sinusoidal displacement applied by the participants to the Maxwell arm and the force felt in their finger when the time constant was small, whereas no difference was observed for a large time constant. Moreover, we observed that the PSE values estimated for the lower bound of the phase angle were significantly closer to their actual limit (0°) than those of the upper bound to 90°.
机译:虽然我们几乎没有与纯弹性或粘性的物体相互作用,但是对可变形物体的触觉感知研究主要限于刚度和阻尼。由于其复杂,时间和速率依赖性机械行为,表现出弹性和粘性行为(粘弹性材料)的材料的心理物理研究是挑战。在这项研究中,我们对人类对频域粘弹性的认识的调查提供了新的洞察。在频域中,粘弹性材料的力响应可以由其大小和相位角表示。使用该框架,我们估计了在两组实验中的复杂刚度幅度和相位角的阻尼器和弹簧的主体平等(PSE)的主观平等(PSE)点。选择阻尼器和弹簧以进行比较,因为它们实际上代表了粘弹性材料的极限情况。我们首先进行了2I-2AFC自适应楼梯实验,以研究麦克斯韦·臂的复杂刚度的感知程度如何变化,用于小而大的时间常数值。然后,我们执行了3I-2AFC自适应阶梯实验,以研究PSE如何随着MaxWell臂中的相位角的函数而变化。我们的研究结果表明,由于参与者在麦克斯韦·臂施加的正弦位移与麦克斯韦·臂之间的正弦位移之间的阶段滞后(相对于阻尼器),当时间常数时,在它们的手指中感觉到的正弦位移之间的阶段滞后(相对于阻尼器的相对于阻尼器的相对于阻尼器)较小,并且当时间常数时感到较小很小,而没有观察到大的时间常数没有差异。此外,我们观察到,对相角的下限估计的PSE值显着更接近它们的实际极限(0°),而不是90°的实际极限(0°)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号