首页> 外文会议>AIAA SPACE conference exposition >Nuclear Thermal Propulsion (NTP): A Proven, Growth Technology for 'Fast Transit' Human Missions to Mars
【24h】

Nuclear Thermal Propulsion (NTP): A Proven, Growth Technology for 'Fast Transit' Human Missions to Mars

机译:核热推进(NTP):一种经过验证的增长技术,可用于“快速过境”人类对火星的飞行任务

获取原文

摘要

The "fast conjunction" long surface stay mission option was selected for NASA's recent Mars Design Reference Architecture (DRA) 5.0 study because it provided adequate time at Mars (~540 days) for the crew to explore the planet's geological diversity while also reducing the "1-way" transit times to and from Mars to ~6 months. Short transit times are desirable in order to reduce the debilitating physiological effects on the human body that can result from prolonged exposure to the zero-gravity (0-g_E) and radiation environments of space. Recent measurements from the RAD detector attached to the Curiosity rover indicate that astronauts would receive a radiation dose of ~0.66 Sv (~66 rem) - the limiting value established by NASA - during their 1-year journey in deep space. Proven nuclear thermal rocket (NTR) technology, with its high thrust and high specific impulse (I_(sp) ~900 s), can cut 1-way transit times by as much as 50% by increasing the propellant capacity of the Mars transfer vehicle (MTV). No large technology scale-ups in engine size are required for these short transit missions either since the smallest engine tested during the Rover program - the 25 klb_f "Pewee" engine is sufficient when used in a clustered arrangement of 3 - 4 engines. The "Copernicus" crewed MTV developed for DRA 5.0 is a 0-gE design consisting of three basic components: (1) the NTP stage (NTPS); (2) the crewed payload element; and (3) an integrated "saddle truss" and LH_2 propellant drop tank assembly that connects the two elements. With a propellant capacity of ~190 t, Copernicus can support 1-way transit times ranging from ~150 - 220 days over the 15-year synodic cycle. The paper examines the impact on vehicle design of decreasing transit times for the 2033 mission opportunity. With a fourth "upgraded" SLS / HLV launch, an "in-line" LH2 tank element can be added to Copernicus allowing 1-way transit times of 130 days. To achieve 100 -120 day transit times, Copernicus' saddle truss / drop tank assembly is replaced by a "star truss" assembly with paired modular drop tanks to further increase the vehicle's propellant capacity. The HLV launch count increases (from ~5-7) and a fourth engine is needed to reduce total mission burn time and gravity losses. Using a "split mission" approach, the NTPS, in-line tank and the saddle truss / LH_2 drop tank elements can be configured as a pre-deployed Earth Return Vehicle / propellant tanker supporting 90-day crewed mission transits. The split mission approach also eliminates the need for on-orbit assembly. Mission scenario descriptions, key features and operational characteristics for five different vehicle configurations are presented.
机译:NASA最近在火星设计参考架构(DRA)5.0研究中选择了“快速连合”长地面停留任务选项,因为它为火星人提供了充足的时间(约540天),供他们探索行星的地质多样性,同时还减少了“往返火星的“单程”运输时间为〜6个月。为了减少可能因长时间暴露于零重力(0-g_E)和空间辐射环境而导致的对人体的衰弱生理效应,需要较短的渡越时间。好奇号探测车上的RAD探测器的最新测量结果表明,宇航员在深空飞行1年后,将接受〜0.66 Sv(〜66 rem)的辐射剂量-NASA确定的极限值。成熟的核热火箭(NTR)技术具有高推力和高比冲(I_(sp)〜900 s),可通过增加火星转移车的推进剂能力将单程运输时间缩短多达50% (MTV)。对于这些短途运输任务,不需要大型的发动机技术升级,因为在Rover计划期间测试过的最小发动机-25 klb_f“ Pewee”发动机在以3-4发动机成簇的布置中使用时就足够了。为DRA 5.0开发的“ Copernicus”乘员MTV是一种0-gE设计,由三个基本组件组成:(1)NTP阶段(NTPS); (2)载人有效载荷要素; (3)连接两个元件的集成式“马鞍形桁架”和LH_2推进剂下降罐总成。哥白尼的推进剂容量约为190吨,可以在15年的对流周期中支持1〜150天至220天的单程运输时间。本文研究了减少2033年任务机会的运输时间对车辆设计的影响。随着第四次“升级”的SLS / HLV发射,可以向哥白尼添加一个“直列” LH2储罐元件,从而实现130天的单程运输时间。为了达到100 -120天的运输时间,哥白尼的鞍形桁架/下沉箱组件被具有配对模块化下沉箱的“星型桁架”组件所取代,以进一步提高车辆的推进剂能力。 HLV的发射次数增加(从〜5-7),并且需要第四台发动机以减少总的任务燃烧时间和重力损失。使用“拆分任务”方法,可以将NTPS,直列式坦克和鞍形桁架/ LH_2降落坦克元素配置为预先部署的回土车/推进剂加油机,以支持90天的乘员飞行任务。分裂任务方法还消除了在轨组装的需要。介绍了五种不同车辆配置的任务场景说明,关键特征和操作特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号