首页> 外文会议>Conference on scanning microscopies >Advances in photo-thermal infrared imaging microspectroscopy
【24h】

Advances in photo-thermal infrared imaging microspectroscopy

机译:光热红外成像显微技术的进展

获取原文

摘要

There is a growing need for chemical imaging techniques in many fields of science and technology: forensics, materials science, pharmaceutical and chemical industries, just to name a few. While FTIR micro-spectroscopy is commonly used, its practical resolution limit of about 20 microns or more is often insufficient. Raman micro-spectroscopy provides better spatial resolution (~1 micron), but is not always practical because of samples exhibiting fluorescence or low Raman scattering efficiency. We are developing a non-contact and non-destructive technique we call photo-thermal infrared imaging spectroscopy (PT-IRIS). It involves photo-thermal heating of the sample with a tunable quantum cascade laser and measuring the resulting increase in thermal emission with an infrared detector. Photo-thermal emission spectra resemble FTIR absorbance spectra and can be acquired in both stand-off and microscopy configurations. Furthermore, PT-IRIS allows the acquisition of absorbance-like photo-thermal spectra in a reflected geometry, suitable for field applications and for in-sttu study of samples on optically IR-opaque substrates (metals, fabrics, paint, glass etc.). Conventional FTIR microscopes in reflection mode measure the reflectance spectra which are different from absorbance spectra and are usually not catalogued in FTIR spectral libraries. In this paper, we continue developing this new technique. We perform a series of numerical simulations of the laser heating of samples during photo-thermal microscopy. We develop parameterized formulas to help the user pick the appropriate laser illumination power. We also examine the influence of sample geometry on spectral signatures. Finally, we measure and compare photo-thermal and reflectance spectra for two test samples.
机译:在科学和技术的许多领域中对化学成像技术的需求不断增长:法医,材料科学,制药和化学工业,仅举几例。尽管通常使用FTIR显微光谱,但其实际分辨率极限通常在20微米左右或更多。拉曼显微光谱法可提供更好的空间分辨率(约1微米),但由于样品显示荧光或拉曼散射效率低,因此并不总是实用的。我们正在开发一种称为光热红外成像光谱(PT-IRIS)的非接触式和非破坏性技术。它涉及使用可调量子级联激光器对样品进行光热加热,并使用红外检测器测量由此产生的热辐射增加量。光热发射光谱类似于FTIR吸收光谱,可以在固定和显微镜配置下获得。此外,PT-IRIS允许在反射的几何结构中获取类似吸收率的光热光谱,适用于现场应用以及对光学不透光的基材(金属,织物,油漆,玻璃等)上样品的现场研究。 。常规的FTIR显微镜以反射模式测量反射光谱,该光谱与吸收光谱不同,通常未在F​​TIR光谱库中进行分类。在本文中,我们将继续开发这项新技术。我们在光热显微镜检查过程中对样品的激光加热进行了一系列数值模拟。我们开发参数化的公式,以帮助用户选择合适的激光照明功率。我们还检查了样品几何形状对光谱特征的影响。最后,我们测量和比较两个测试样品的光热和反射光谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号