首页> 外文学位 >Infrared microspectroscopy of plants: Use of synchrotron radiation infrared microspectroscopy to study plant root anatomy and to monitor the fate of organic contaminants in those roots.
【24h】

Infrared microspectroscopy of plants: Use of synchrotron radiation infrared microspectroscopy to study plant root anatomy and to monitor the fate of organic contaminants in those roots.

机译:植物的红外光谱:使用同步辐射红外光谱研究植物的根部解剖结构,并监测这些根中有机污染物的命运。

获取原文
获取原文并翻译 | 示例

摘要

The fate and bioavailability of organic contaminants in plants is a major ecological and human health concern. Current wet chemistry techniques that employ strong chemical treatments and extractions with volatile solvents, such as GC-MS, HPLC, and radiolabeling, although helpful, degrade plant tissue resulting in the loss of spatial distribution and the production of artifacts. Synchrotron radiation infrared microspectroscopy (SR-IMS) permits direct analysis of plant cell wall architecture at the cellular level in situ, combining spatially localized information and chemical information from the IR absorbances to produce a chemical map that can be linked to a particular morphology or functional group. This study demonstrated the use of SR-IMS to probe biopolymers such as cellulose, lignin, and proteins in the root tissue of hydroponically grown sunflower and maize plants as well as to determine the fate and effect of several organic contaminants in those root tissues. Principal components analysis (PCA), a data compression technique, was employed to reveal the major spectral variances between untreated and organic contaminant treated root tissues. Treatment with 1H-benzotriazole (BT) caused alterations to the lignin component in the root tissue of plants. The BT was found in xylem and epidermal tissue of sunflower plants but not associated with any particular tissue in maize roots. 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) altered the pectin and polysaccharide structure in both maize and sunflower. SR-IMS revealed the reduction of DNTs to their aromatic amine form in the vascular and epidermal tissues at low concentration. At high concentration, DNTs appeared to be associated with all the plant tissues in maize and sunflower. Exposure of sunflower and maize to 2,6-dichlorophenol (2,6-DCP) caused alterations to the polysaccharide and protein component of the root tissue. In some cases, phenolic compounds were observed in the epidermal tissue of maize and sunflower roots. The results of this research indicate that SR-IMS has the potential to become an important analytical tool for determining the fate and effect of organic contaminants in plants.
机译:植物中有机污染物的结局和生物利用度是对生态和人类健康的重大关注。当前的湿化学技术采用强力化学处理和挥发性溶剂萃取,例如GC-MS,HPLC和放射性标记,虽然有帮助,但会降解植物组织,导致空间分布的损失和伪影的产生。同步辐射红外光谱(SR-IMS)可以在细胞水平上直接分析植物细胞壁的结构,结合空间定位信息和来自红外吸收的化学信息,生成可以与特定形态或功能关联的化学图谱组。这项研究证明了使用SR-IMS在水培向日葵和玉米植物的根组织中探测生物聚合物,例如纤维素,木质素和蛋白质,以及确定这些根组织中几种有机污染物的命运和影响。主成分分析(PCA)是一种数据压缩技术,用于揭示未处理和有机污染物处理过的根组织之间的主要光谱差异。用1H-苯并三唑(BT)处理导致植物根组织中木质素成分发生变化。 BT在向日葵植物的木质部和表皮组织中发现,但与玉米根中的任何特定组织无关。 2,4-二硝基甲苯(2,4-DNT)和2,6-二硝基甲苯(2,6-DNT)改变了玉米和向日葵中的果胶和多糖结构。 SR-IMS显示,在低浓度的血管和表皮组织中,DNTs还原为芳族胺形式。在高浓度下,DNTs似乎与玉米和向日葵中的所有植物组织有关。向日葵和玉米暴露于2,6-二氯苯酚(2,6-DCP)会引起根组织的多糖和蛋白质成分发生变化。在某些情况下,在玉米和向日葵根的表皮组织中观察到酚类化合物。这项研究的结果表明,SR-IMS有潜力成为确定植物中有机污染物的命运和影响的重要分析工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号