首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >TURBOCHARGER SYNCHRONOUS VIBRATION CONTROL ON HIGH SPEED BALANCER TEST AND PREDICTION
【24h】

TURBOCHARGER SYNCHRONOUS VIBRATION CONTROL ON HIGH SPEED BALANCER TEST AND PREDICTION

机译:高速平衡器测试和预测上的涡轮增压器同步振动控制

获取原文

摘要

Current trends for advanced automotive engines focusing on downsizing, better fuel efficiency and lower emissions have led to several changes in turbocharger bearing systems design and technology. Automotive turbochargers are running faster under high engine vibration level. Vibration control is becoming a real critical issue and turbocharger manufacturers are focusing more and more on new and improved balancing technology. This paper deals with turbocharger synchronous vibration control on high speed balancers. In a first step the synchronous rotordynamics behavior is identified. The developed fluid bearing code predicts bearing rotational speed (in case of fully-floating design), operating inner and outer bearing film clearances and bearing force coefficients. A rotordynamics code uses this input to predict the synchronous lateral dynamic response of the rotor-bearing system by converging with bearing eccentricity ratio. The rotor-bearing system model is validated by shaft motion test data on high speed balancer (HSB). It shows that only one of the peaks seen on the synchronous G level plot collected in a high speed balancer can be explained by rotordynamics physics. A step-by-step structural dynamics model and analysis validated by experimental frequency response functions provides robust explanations for the other G level peaks. The synchronous vibration response of the system "turbocharger-HSB fixture" is predicted by integrating the predicted rotordynamics rotational bearing loads on the structural dynamics model. Numerous test data show very good correlation with the prediction, which validates the developed analytical model. The "rotordynamics - structural dynamics model" allows deep understanding of turbocharger synchronous vibration control as well as optimization of the high speed balancer tooling.
机译:目前用于专注于缩小规模,更好的燃料效率和较低排放的先进汽车发动机的趋势导致涡轮增压器轴承系统设计和技术的几种变化。汽车涡轮增压器在高发动机振动水平下运行得更快。振动控制正成为一个真正的关键问题,涡轮增压器制造商正在越来越关注新的和改进的平衡技术。本文涉及高速平衡器上的涡轮增压器同步振动控制。在第一步中,识别同步旋转动力学行为。开发的流体轴承码预测轴承转速(在完全浮动设计的情况下),操作内部和外轴承膜间隙和轴承力系数。 Rotordynamics代码使用该输入来通过轴承偏心比聚合来预测转子系统的同步横向动态响应。通过高速平衡器(HSB)的轴运动测试数据验证转子系统模型。它表明,在高速平衡器中收集的同步G电平绘图中只能解释磁盘物理学的同步G电平图中的一个峰。通过实验频率响应函数验证的逐步结构动态模型和分析为其他G级峰提供了强大的解释。通过将预测的旋转动力学旋转轴承负载集成在结构动力学模型上,预测系统“涡轮增压器-HSB夹具”的同步振动响应。许多测试数据显示与预测的非常好的相关性,该预测验证了开发的分析模型。 “圈动力学 - 结构动力学模型”允许深度理解涡轮增压器同步振动控制以及高速平衡器工具的优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号