首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >TURBOCHARGER SYNCHRONOUS VIBRATION CONTROL ON HIGH SPEED BALANCER TEST AND PREDICTION
【24h】

TURBOCHARGER SYNCHRONOUS VIBRATION CONTROL ON HIGH SPEED BALANCER TEST AND PREDICTION

机译:高速平衡器测试的涡轮增压器同步振动控制和预测

获取原文

摘要

Current trends for advanced automotive engines focusing on downsizing, better fuel efficiency and lower emissions have led to several changes in turbocharger bearing systems design and technology. Automotive turbochargers are running faster under high engine vibration level. Vibration control is becoming a real critical issue and turbocharger manufacturers are focusing more and more on new and improved balancing technology. This paper deals with turbocharger synchronous vibration control on high speed balancers. In a first step the synchronous rotordynamics behavior is identified. The developed fluid bearing code predicts bearing rotational speed (in case of fully-floating design), operating inner and outer bearing film clearances and bearing force coefficients. A rotordynamics code uses this input to predict the synchronous lateral dynamic response of the rotor-bearing system by converging with bearing eccentricity ratio. The rotor-bearing system model is validated by shaft motion test data on high speed balancer (HSB). It shows that only one of the peaks seen on the synchronous G level plot collected in a high speed balancer can be explained by rotordynamics physics. A step-by-step structural dynamics model and analysis validated by experimental frequency response functions provides robust explanations for the other G level peaks. The synchronous vibration response of the system "turbocharger-HSB fixture" is predicted by integrating the predicted rotordynamics rotational bearing loads on the structural dynamics model. Numerous test data show very good correlation with the prediction, which validates the developed analytical model. The "rotordynamics - structural dynamics model" allows deep understanding of turbocharger synchronous vibration control as well as optimization of the high speed balancer tooling.
机译:当前,以小型化,提高燃油效率和降低排放为重点的先进汽车发动机的趋势已导致涡轮增压器轴承系统设计和技术发生了几处变化。在较高的发动机振动水平下,汽车涡轮增压器的运行速度更快。振动控制已成为一个现实的关键问题,涡轮增压器制造商越来越关注新的和改进的平衡技术。本文研究了高速平衡器上的涡轮增压器同步振动控制。第一步,识别同步转子动力学行为。开发的流体轴承代码可预测轴承转速(在全浮动设计的情况下),内部和外部轴承膜间隙以及轴承力系数。转子动力学代码使用此输入通过与轴承偏心率比率收敛来预测转子轴承系统的同步横向动态响应。转子轴承系统模型已通过高速平衡器(HSB)上的轴运动测试数据进行了验证。结果表明,转子动力学物理学只能解释在高速平衡器中收集到的同步G电平图上看到的峰之一。通过实验频率响应功能验证的分步结构动力学模型和分析为其他G级峰提供了有力的解释。通过将预测的转子动力学旋转轴承载荷整合到结构动力学模型中,可以预测系统“ turbocharger-HSB夹具”的同步振动响应。许多测试数据显示出与预测的很好的相关性,从而验证了开发的分析模型。 “转子动力学-结构动力学模型”可让您深入了解涡轮增压器同步振动控制以及高速平衡器工具的优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号