首页> 外文会议>Progress in electromagnetics research symposium >Magnetic Field Expulsion in Perfect Conductors-The Magnetic Equivalent of Thomson's Theorem
【24h】

Magnetic Field Expulsion in Perfect Conductors-The Magnetic Equivalent of Thomson's Theorem

机译:理想导体中的磁场驱除-汤姆森定理的磁当量

获取原文

摘要

Thomson's theorem states that electric charge density on metal conductors, at static equilibrium, is distributed on the surface of the conductors in such a way that the interior electric field is zero, and the electric field on the surface must be perpendicular to the surface. In this paper, we present a theorem for static magnetic fields, analogous of the Thomson's theorem of electrostatics. We prove, by making use of a variational principle, that the minimization of the magnetic field energy corresponds to the magnetic field expulsion of perfect conductive systems through surface currents. As a result, the current density distributes itself on the surface of the ideal conductor so that the interior magnetic field becomes zero, and all current flows on its surface. This result is put into the context of superconductivity, and leads us to conclude the Meissner effect is not a pure quantum effect, restricted to superconductors, but rather a magnetostatic equilibrium state as a consequence of zero resistivity. In addition, the London equations are derived following an approach by Pierre-Gilles de Gennes where "the superconductor finds an equilibrium state where the sum of the kinetic and magnetic energies is minimum, and this state, for macroscopic samples, corresponds to the expulsion of magnetic flux". For further confirmation, the same result is also derived in the classical limit of the Coleman-Weinberg model, the most successful quantum macroscopic theory of superconductivity. A specific example is presented to corroborate the result of our theorem. In particular, an explicit solution for a minimal energy magnetic field configuration is analyzed, and found to be in agreement with our statement.
机译:汤姆森定理指出,金属导体上的电荷密度在静态平衡时以内部电场为零且表面上的电场必须垂直于表面的方式分布在导体的表面上。在本文中,我们提出了一个关于静磁场的定理,类似于静电的汤姆森定理。我们利用变分原理证明,磁场能量的最小化对应于理想导电系统通过表面电流排出的磁场。结果,电流密度将自身分布在理想导体的表面上,从而内部磁场变为零,并且所有电流都在其表面上流动。该结果被置于超导环境中,使我们得出结论,迈斯纳效应不是纯量子效应,仅限于超导体,而是归因于零电阻率的静磁平衡态。此外,伦敦方程是根据Pierre-Gilles de Gennes的方法推导的,其中“超导体找到动能和磁能之和最小的平衡状态,并且对于宏观样本,该状态对应于开核的排出。磁通量”。为了进一步确认,在最成功的超导量子宏观理论Coleman-Weinberg模型的经典极限中也得出了相同的结果。给出一个具体的例子来证实我们定理的结果。尤其是,分析了一种针对最小能量磁场配置的显式解决方案,发现该解决方案与我们的陈述相符。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号